European HELIOS Project: Silicon Photonic Photodetector Integration

L. Vivien, J. Osmond, D. Marris-Morini, P. Crozat, E. Cassan
Institut d’Electronique Fondamentale, CNRS UMR 8622, Bât. 220, Université Paris-sud XI, F-91405 ORSAY cedex – France

J-M. Fédéli, S.Brision, JF.Damlencourt, V.Mazzochi
CEA-LETI, Minatec, CEA-Grenoble, 17 rue des Martyrs, F-38054 GRENOBLE cedex 9, France.

D. Van Thourhout, J. Brouckaert
Ghent University – IMEC - Sint-Pietersnieuwstraat 4, 9000 Gent, Belgium

Abstract:
We report recent experimental results of two kinds of photodetectors developed in the framework of the European project HELIOS: InAlAs–InGaAs metal–semiconductor–metal photodetectors and germanium photodetectors.

Keywords: microphotonics, waveguide, silicon-on-insulator, germanium, InGaAs, photodetector, integrated optics

Silicon-based photonics has generated an increasing interest in the recent year, mainly for optical telecommunications or optical interconnects in microelectronic circuits. The rationale of silicon photonics is the reduction of photonic system cost through the integration of photonic components and an electronic integrated circuit (EIC) on a common chip. At longer term, the EIC characteristics with the introduction of optics inside a high performance circuit should be enhanced.

For several years, numerous developments of silicon-based passive and active building blocks on and in silicon like waveguides [1,2], modulators [3-5], III/V source on silicon [6] and photodetectors [see table 1] have been carried out with impressive breakthroughs.

Figure 1: Possible integration routes [7]

Among all elementary components, efficient light photodetectors is one of the most important to make a high speed optical link for either optical telecommunications or interconnects. The choice of the absorbent material at telecom wavelength is directly linked to the integration...
scheme we choose. Indeed, two kinds of active material can be used to detect light on silicon: germanium which is directly compatible with CMOS technology and III–V compound semiconductors which can be heterogeneously integrated. Different integration technology options are presented in figure 1.

The integration schemes presented in figure 1 require different material strategies for photonic devices, especially for active components. Indeed, in option 1 often called 3D integration or above IC integration, the photonic layer is realized at the metallization levels with back-end of the line technology (BEOL). In this case, all photonic devices are processed at low temperature and efficient III-V material will be used. In the option 2, III-V material can hardly integrated at the level of silicon transistor. While in other options, either III-V or germanium can be used with a slight preference to consider monolithic integration using germanium instead of III-V components. In the framework of European project Helios, each option will be considered and both III-V and germanium photodetectors integrated in silicon waveguides are studied. Table 1 presents a non-exhaustive state of the art of photodetectors in/on silicon using either III-V materials bonded on Si or germanium on silicon.

<table>
<thead>
<tr>
<th>Ge-on-Si photodetectors</th>
<th>III-V-on-Si photodetectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIT</td>
<td>PICMOS</td>
</tr>
<tr>
<td>UPS-IEF & LETI</td>
<td>IMEC</td>
</tr>
<tr>
<td>INTEL</td>
<td>INTEL</td>
</tr>
<tr>
<td>UPS-IEF & LETI</td>
<td>LETI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Dark current at -1V</th>
<th>Responsivity</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>~1 µA</td>
<td>~1.08 A/W</td>
<td>7.2 GHz</td>
</tr>
<tr>
<td>2007</td>
<td>~100 µA</td>
<td>> 1 A/W</td>
<td>25 GHz</td>
</tr>
<tr>
<td>2007</td>
<td>~170 nA</td>
<td>~0.9 A/W</td>
<td>31 GHz</td>
</tr>
<tr>
<td>2008</td>
<td>~20 nA</td>
<td>~1 A/W</td>
<td>42 GHz</td>
</tr>
<tr>
<td>2006</td>
<td>~1 nA</td>
<td>~0.45 A/W</td>
<td>33 GHz</td>
</tr>
<tr>
<td>2007</td>
<td>~1 nA</td>
<td>~1 A/W</td>
<td>-</td>
</tr>
<tr>
<td>2007</td>
<td>~50 nA</td>
<td>~0.31 A/W</td>
<td>0.5 GHz</td>
</tr>
<tr>
<td>2007</td>
<td>~10 nA</td>
<td>~0.01 A/W</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: Non-exhaustive state of the art germanium and III-V photodetectors on silicon [8-16].

In the framework of the European project HELIOS, compact and efficient InAlAs–InGaAs metal–semiconductor–metal photodetectors and germanium photodetectors integrated on silicon-on-insulator (SOI) waveguides are studied and optimized to achieve data transmission up to 40Gbit/s. dark-current and responsivity at a wavelength of 1.55µm of both III-V and Ge waveguide photodetectors are about few nA and 1 A/W respectively.

As an example, we obtained an open eye diagram from a vertical pin Ge-on-Si diode integrated with a rib waveguide, modulated at 40Gb/s, as shown in Fig. 2.
In conclusion, we report recent results of two kinds of photodetectors developed in the framework of the European project HELIOS: InAlAs–InGaAs metal–semiconductor–metal photodetectors and germanium photodetectors. Low dark-current and high responsivity at a wavelength of 1.55µm have been achieved with both photodetectors. Data transmission up to 40 Gbit/s for Ge photodiode has been obtained.

Acknowledgement:
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 224312 HELIOS.

Figure 2: (a) Schematic view of vertical pin Ge-on-Si diode integrated in rib waveguide. (b) Open eye diagram at 40Gbit/s.