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Abstract

The demand for more bandwidth necessitates an increase in the data-rates of optical telecom-

munication systems. Continuously new all-optical techniques are developed to measure and

process the sent ultrashort pulses with femtosecond accuracy. This thesis work focusses on

the time-lens oscilloscope architecture which allows us to characterise sub-picosecond pulses.

It is a so-called temporal imaging system that can easily be understood by comparison with a

classical thin lens imaging system. Just like Fraunhofer diffraction after a thin lens results in

the spatial Fourier transform of the incident field at the focal plane of the thin lens, the time-

lens architecture performs a (temporal) Fourier transform on the incident pulse under test.

The output pulse thus yields the spectrum of the incident pulse. Consecutive measurement

of that output pulse with an optical spectrum analyser, gives the temporal waveform of the

input pulse. State-of-the art time-lens oscilloscopes provide the measurement of signals with

200 fs resolution over a record length of 150 ps. By means of simulations we investigate in

detail the most up-to-date time-lens architecture which exploits four-wave-mixing in a nonlin-

ear medium. Based on the simulation results, we developed a new four-wave-mixing time-lens

architecture using a reconfigurable pulse shaper to overcome the most important source of

aberrations. Furthermore it is the first tuneable implementation of a time-lens architecture

with femtosecond resolution. The first experimental results demonstrate the measurement

of a 1 ps Sech pulse and a 25 ps long pulse train. The overall performance and limitations

of our proposed implementation are determined to allow comparison with alternative pulse

characterisation techniques and state-of-the art time-lens oscilloscopes.
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Chapter 1

Introduction

With the advent of femtosecond lasers and new insights into the possibilities of nonlinear
optics, a new field of optical measurement techniques with femtosecond accuracy has opened
up. The need for high resolution measurements is driven by interest in ultrafast chemical
and physical phenomena and in ever increasing data rates in telecommunication systems. In
the near future, these increasing data rates will necessitate data pulses with femtosecond
duration, thus at the receiver side femtosecond resolution will be needed to read the sent in-
formation. In addition to high resolution, single-shot techniques are required to capture rapid
time-varying and/or non-repetitive events. Using a single-shot technique makes sure that no
averaging over the signal shape occurs. As the inevitable bandwidth limitations of electronic
devices makes them insufficient for femtosecond waveform characterizations, optical solutions
are the way to go.

Several nonlinear optical pulse measurement techniques are now utilized in high-bandwidth
laboratories, of which the most popular are the autocorrelator and spectrographic methods
like Frequency Resolved Optical Gating (FROG). The autocorrelator is a fast device but it can
only give a rough estimate of the shape and duration of the pulse. Spectrographic methods
offer the needed femtosecond accuracy and an acceptable single-shot record length of about
10 ps. But spectrographic devices need reconstruction algorithms for the final measurement
output which makes them slow.

Recently a very interesting and potentially fully on-chip optical oscilloscope was developed
with 220 fs resolution and a record length of more than 100 ps [M.A. Foster et al. Nature
456, 81-84 (2008)[1]]. The imaging system is fully analogous to a spatial imaging system with
a lens working in the Fraunhofer regime which offers a 2D spatial Fourier transform of the
input field. The optical oscilloscope performs the Fourier transform of the incident temporal
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waveform, essentially returning its optical spectrum. Hence the measurement of the spectrum
at the Fourier plane yields the temporal amplitude of the incident waveform, allowing a direct
measurement of the latter.

Figure 1.1: a. A spatial optical Fourier transform processor. b. A temporal optical Fourier transform
processor. M.A. Foster et al. Nature 456, 81-84 (2008)[1]

A simple schematic as shown in figure 1.1 makes this visually clear. The principle of oper-
ation relies on the space-time duality between the equations governing paraxial diffraction
and narrow-band dispersion. Replacing all elements of a spatial imaging system (diffractive
element, lens) by its temporal analogs (dispersive element, time-lens) constitutes a temporal
imaging system that allows for the above described Fourier transform property or e.g. tem-
poral magnification (stretching of signals).

It is not the first time that a time-lens has been used in a temporal imaging system. Ear-
lier implementations used for example an electro-optic modulator as a time-lens [2]. As this
modulator is controlled by electronics, it is too slow for femtosecond operation. The shift to
an optical solution was needed to make the time-lens imaging system capable of measuring
femtosecond pulses.

The beauty of the proposed setup lies in the fact that the time-lens action is performed opti-
cally on a 1.5 cm silicon chip and the dispersive optical fibers used are potentially integratable
on the same chip. At the same time it has some unsatisfying properties, leading to this thesis
research.
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Firstly, as long as the dispersive lengths are not integrated, the fiber lengths used counter-
mands the compactness of the elegant chip-based solution. The question thus arises: is the
reported 50m of dispersive fiber necessary to obtain their attractive results?
Secondly, the dispersive elements should only impose second-order dispersion for optimal
performance and the inevitable third-order-dispersion (TOD) in the fiber causes limiting
aberrations.
Finally, the proposed set-up is a very static implementation. We will show that the perfor-
mance can be optimized by utilising a more flexible set-up.

An important added value of this thesis research is the new approach to the TOD aber-
ration problem. Instead of using dispersive fibers we will use the advanced Waveshaper®
equipment which can shape the amplitude and phase of pulses before we send them into the
time-lens, hereby completely removing the source of TOD. Moreover the Waveshaper is a
programmable device, allowing a dynamic implementation. We will also replace the silicon
chip by a chalcogenide chip with the same functionality, as chalcogenide has no unwanted
two-photon-absorption and free-carrier effects, which limit the dynamic range. Moreover, as
the setup is a very delicate interplay of many actors and nonlinear effects, this project aims
to elucidate the influence of all design parameters through simulation and experiment.

The structure of this thesis is as follows: In Chapter 2 we explain the theory of temporal
imaging which forms the essential background for understanding temporal imaging systems.
In Chapter 3 the key experiments of the past are reviewed as well as somee alternative
measurement techniques. The aim of Chapter 4 is to give a complete framework to understand
the influence of all parameters and to develop a design strategy. With this knowledge we
design and simulate the experiments as shown in Chapter 5. The results of the measurements
performed in the lab are presented and discussed in Chapter 6. We conclude the work done
and reflect on possible future directions in the final Chapter 7.
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Chapter 2

Theory of temporal imaging

2.1 Introduction

This chapter begins with the basics in space-time duality theory. It examines the origins
of this duality and overviews the fundamental equations of the theory. The applications of
space-time duality theory lead to the concept of a time-lens which is analogous to a normal
(thin) lens. Hence in the second section we elucidate the time-lens formalism. A lens is
generally used in spatial imaging systems, this corresponds via the space-time duality to a
time-lens, used in ’temporal’ imaging systems. These can have a magnifying action (stretch a
signal in time) or a Fourier transform property, yielding the spectrum of the incoming signal.
After expanding on the basics of these two types of temporal imaging systems we discuss
shortly the main performance issues of temporal imaging systems namely their resolution and
(possible) aberrations.

2.2 Space-time duality theory

2.2.1 Origin duality

There exists an intriguing duality between paraxial diffraction and narrow-band dispersion.
The former is a fundamental property of propagating waves, manifesting itself in the spread-
ing out of a wave when it passes through a small aperture. Important for our duality is the
fact that the wave spreads out in space. This is shown in figure 2.2 [3]. Analogously, the
dispersion phenomenon acts on modulated waves or pulses. When a pulse travels through
a dispersive medium, it spreads out in time. The main reason for this is that modulated
waves contain different frequencies which all have a slightly different speed as the refractive
index of nearly every medium is frequency-dependent. As a result after a small distance not
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all frequencies have travelled the same distance and the pulse is broadened in time. While
diffraction causes the wave to spread out in space, dispersion imparts broadening in time.
This duality is called space-time duality and has been known about 50 years [4, 5, 6].

Figure 2.1: Duality between the assumptions for paraxial diffraction and narrow-band dispersion.
[7]

We now take a closer look why the adjectives paraxial and narrow-band are used to specify
the duality. For paraxial diffraction we consider a monochromatic wave with carrier frequency
ω0, which leads to a delta function in the temporal-frequency spectrum at ω0. The paraxial
approximation, which says that a wave is confined along the direction of the k0-vector, means
that the wave has a narrow band of spatial frequencies. In 2.5.1 we explain the spatial
frequency concept more thoroughly but for now it is just important to know that the largest
spatial frequency is a measure for the confinement of the wave. For dispersion it is the other
way around: we assume a narrow-band temporal-frequency spectrum as we describe the
evolution of modulated waves. At the same time we ignore the spatial profile of the wave and
treat the wave as an infinite plane wave propagating along the z-axis. The spatial frequency
spectrum reduces to a delta-function as the wave is perfectly aligned with the z-axis. The
complementary characteristics are shown in figure 2.1.

Beyond this intuitive reasoning, simple mathematical derivations show that the equations
which govern both diffraction and narrow-band dispersion belong to the same mathematical
class of parabolic differential equations to which the heat diffusion equation also belongs. In
order to understand the space-time duality concept more fully, we examine the governing
equations in detail.
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2.2.2 Fundamental equations:

We derive the equation for paraxial diffraction, and for the narrow-band dispersion equation
we show that it is a simplified version of the nonlinear Schrödinger equation which describes
the pulse evolution in a nonlinear dispersive medium. Of course one can also derive the
narrow-band dispersion equation directly, as shown in reference [8], but in the framework of
this thesis it is useful to introduce the important nonlinear Schrödinger equation.

Paraxial diffraction:

Figure 2.2: Diffraction of a monochromatic wave when passing through a slit [3].

We start off with determining the equation for paraxial diffraction. We use the (scalar) wave
theory of light in which we represent light by a real scalar function u(r,t) which satisfies the
wave equation 52u − 1

v2
∂2u
∂t2

= 0, with v the speed of the wave in the medium. The scalar
function u(r,t) has the complex representation U(r,t) such that u(r, t)=Re{U(r, t)} in the
(quasi-)monochromatic case. Assume a monochromatic paraxial wave propagating along the
z-axis. We can represent the wave by its complex amplitude U(r) = E(r) exp (−i k z), with
k = 2π

λ . A paraxial wave has a complex envelope E(r) which is slowly varying with position
compared to the wavelength λ. This implies the following conditions:

1. |∂2E
∂z2
|2 � |∂2E

∂x2 |2

2. |∂2E
∂z2
|2 � |∂2E

∂y2
|2

3. |∂2E
∂z2
|2 � |2k ∂E∂z |

These conditions basically mean that “the curvature of the field envelope in the direction of
propagation is much less than the curvature of the transverse profile” [7]. The monochromatic
assumption leads to the Helmholtz equation for U(r) which is used in diffraction theory.
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Incorporating all assumptions stated above in the Helmholtz equation leads to the paraxial
Helmholtz equation which governs the evolution of the slowly-varying envelope E(r) of the
wave:

∂2E

∂x2
+
∂2E

∂y2
− 2ik

∂E

∂z
= 0 (2.1)

In shortened form using the transverse laplacian operator ∇2
t the equation is:

∂E

∂z
= − i

2k
∇2
tE (2.2)

which is a parabolic equation.

Narrow-band dispersion:
For narrow-band dispersion we show that we can simplify the nonlinear Schrödinger (NLS)
equation to end up with the parabolic equation we are looking for. Consider the pulse:
E(r, t) = A(z, t) exp (i (ω0 t− β0 z)). The evolution of its slowly varying pulse envelope A(z,t)
is described by the nonlinear Schrödinger equation which is stated here [9]:

∂A

∂z
= − i

2
β2
∂2A

∂τ2
+

1
6
β3
∂3A

∂τ3
+
i

24
β4
∂4A

∂τ4
−α

2
A+i γ |A|2A− γ

ω0

∂

∂τ
(|A|2A)−i γ TRA ∂

∂τ
(|A|2)

(2.3)
The above stated NLS equation 4.1 is derived assuming the exp (−i ω0 t) dependence. In the
rest of this thesis we work with the opposite convention exp (i ω0 t). In the NLS equation
the traveling-wave coordinate system is introduced, which is defined via the following two
variables:

τ = (t− t0)− (z − z0)
vg

, ξ = z − z0 (2.4)

This coordinate system is equivalent with ignoring the average pulse delay connected with
the group velocity vg. We choose z0 = 0 so that we can replace ξ by z.

This equation covers many linear and nonlinear effects which affect the pulse shape and
spectrum. We now assign a physical phenomenon to every term of equation 4.1.
All terms βj with j = index describe how dispersion affects the pulse to different orders.
Dispersion is a linear effect, which broadens the pulse but doesn’t affect the spectrum. It
can be easily understood by considering that different frequencies travel at different speeds
through the fiber due to group-velocity dispersion (GVD). As the different frequencies get
delayed with respect to each other they don’t arrive at the same time and thus the pulse
spreads out. This is shown in figure 2.3. The term α (attenuation constant) is a measure
for the losses in the medium. All terms containing γ (nonlinear parameter) describe various
nonlinear effects. The first term to include γ represents effects caused by the optical Kerr
effect, the second term in γ reflects self-steepening and the third term in γ describes stimulated
Raman scattering (SRS).



2.2 Space-time duality theory 8

Figure 2.3: Narrowband dispersion causes the pulse to spread out in time with travelled distance.

To show the analogy between narrow-band dispersion and diffraction we start with eliminating
most terms from the NLS equation. First of all we assume a medium in which no nonlinearities
are present, so all terms containing the nonlinear parameter γ stop playing a role. This
assumption originates from the fact that the nonlinear parameter of most materials is very
small and the assumption is valid when we avoid using pulses with very high peak powers
or materials with a high nonlinear parameter. Secondly we assume a lossless medium. The
loss will just scale our solution and is in that sense not very fundamental. For the last
assumption we use the narrow-band property of the pulse. Because the pulse is narrow-band
(∆ω
ω0

<< 1) we can neglect the effects caused by third order dispersion (TOD) β3 and fourth
order dispersion (FOD) β4, because second order dispersion dominates strongly. There is one
exception though: if the carrier wavelength is close to the zero-dispersion wavelength, β2 and
β3 dispersion become comparable, and TOD must then be included.
Bearing the change of sign in mind (because we use the opposite convention), we end up with
the parabolic equation:

∂A(z, τ)
∂z

=
i

2
β2
∂2A(z, τ)
∂τ2

(2.5)

A quick comparison confirms the parabolic form of the equations:
Paraxial diffraction

∂E
∂z

= − i
2k
∇2
tE

Narrowband dispersion

∂A
∂z

= i
2
β2

∂2A
∂τ2
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The equation for narrowband dispersion is easily solved in the spectral domain. The baseband
(Ω) spectrum of the pulse envelope A(z,Ω) = F (A(z, τ)) is described independently of the
carrier frequency, yielding [10]:

A(z,Ω) = A(0,Ω) exp(
−i z β2 Ω2

2
). (2.6)

As the spectrum of the pulse is the baseband spectrum A(z,Ω) of the envelope centered
around the carrier ω0: E(z, ω) = A(z,Ω) exp(−i β0 z), the total solution is known.

2.3 Time-lens concept

After our elaboration on the origin and concept of time-space duality we come to a point
where we explain how it can be used. The researcher Brian H. Kolner was the first to realize
that a complete temporal analog of an imaging system could be made based on the duality
as long as a temporal-analog of a normal thin lens was found [B.H. Kolner, IEEE J. Quant.
Electron. 30, 1951-1963 (1994)[7]]. He was thus the founding father of the theory of temporal
imaging. With this so-called ’time-lens’ we could then either built a magnifier which allows for
stretching of signals in the time domain or use the temporal analog of Fraunhofer diffraction
and create a Fourier transform. Hence we can retrieve the spectrum of a signal. Figure 2.4
shows these two operation regimes.

Figure 2.4: Magnifying and Fraunhofer regime of a temporal imaging system.

To understand what constitutes a temporal analog of a thin lens, we first explain and derive
what the action of a thin lens in the spatial domain is and then look for an equivalent time-lens
which acts on the time domain.
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2.3.1 Thin lens action

Essentially a thin lens acts as a phase transformer. Because the lens has a different refractive
index n than the surrounding air (nair = 1), the resulting phase shift of the light following
transit depends on the time spent in the lens. We consider a thin lens so that a light ray
propagating in the z-direction which enters the lens at a transverse position (x,y), leaves the
lens at the same transverse position. The resulting phase shift for each transverse position
is dependent on the focal distance f of the lens and varies quadratically in the (spatial)
parameters x and y [11]:

t (x, y) = e−ikn∆0e
i k
2 f

(x2+y2) (2.7)

A derivation of this equation can be found in the appendix A.1. The first exponential is a
(negligible) constant factor depending on the maximal thickness ∆0 of the lens and the second
exponential contains the fundamental lens-operation. The lens quadratically modulates the
phase of the incoming field in the real space. In doing so for example the outgoing wavefront
of an incoming plane wave will spherically diverge or converge depending on the sign of the
focal distance f as shown in figure 2.5.

Figure 2.5: The action of a thin lens depends on the sign of the focal distance [11].

2.3.2 Time-lens action

From the above equation 2.7, the lens-operation can be described by the phase modulation
e
i k
2 f

(x2+y2). It is now time to look for a similar factor describing the time-lens action. We
look for a quadratic phase modulation of the incoming field in time. We must be clear
though: the time-parameter we consider is the traveling-wave coordinate τ as defined by
(2.4). Additionally this quadratic phase modulation is equivalent to a linear chirp in the
spectrum of a pulse. In accordance with reference [7] we propose:

H (τ) = e
i ω0
2 fT

τ2

= ei φ(τ) (2.8)

in which fT is the focal time and ω0 is the optical carrier frequency of the outgoing wave.
Therefore any configuration that imparts a quadratic phase modulation in time to a pulse is
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suited to play the role of time-lens. This can be achieved by using an electro-optic modulator
or by all-optical mixing whereby an optical pump imposes its quadratic phase to the signal
via a nonlinear process. In the following sections a description is given for the characteristic
parameters of the time-lens. Just as a normal lens has a specific focal distance, numerical
aperture and f-number, a time-lens has a focal time, temporal aperture and f-number.

2.3.3 Focal time

The focal time fT is a measure of the chirp rate imposed by the lens. The chirp rate K is the
time-derivative of the instantaneous frequency ωi: K = dωi/dτ . The instantaneous frequency
ωi is defined by:

ωi = ω0 +
dφ

dτ
(2.9)

To show the dependence of fT on K, we write down a Taylor series for a general phase function
around τ = τ0:

φ(τ) = φ0(τ) + (τ − τ0)
dφ

dτ
+

(τ − τ0)2

2!
d2φ

dτ2
+ ... (2.10)

After putting τ0 = 0 (which is possible because we can choose our time origin) and comparing
equation (2.10) with equation (2.8), we can identify:

d2φ

dτ2
=
ω0

fT
(2.11)

We can thus relate the focal time with the chirp rate via:

fT =
ω0

dωi/dτ
=
ω0

K
(2.12)

We can interprete this result easily. It states that when the chirp rate is high we have a short
focal time and thus strong lens action and vice versa. Closely related to the focal time is the
focal length ξf . This focal length is ”the propagation distance to remove the phase modulation
of the lens” [10]. The focal length combined with the β2 dispersion parameter of the specific
medium in which the pulse travels gives the focal group delay dispersion (focal GDD) which
is related to the chirp of the lens:

Df = ξf · β2 = − 1
dωi/dτ

= − 1
K

(2.13)

2.3.4 Temporal aperture:

The numerical aperture of a lens defines the region where the parabolic phase is applied to
the incoming field. Analogously the time aperture defines a time-window through which the
parabolic phase is applied. If the incoming pulse is longer than the aperture time, only a part
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of the pulse will undergo lens action. If the rest of the pulse doesn’t see a quadratic phase
modulation, this results in limited resolution and aberrations. Figure 2.6 illustrates this:

Figure 2.6: The time aperture defines the time-window through which the parabolic phase is applied.

2.3.5 f-number

For a thin lens the definition is f# = f/D in which D is the lens diameter and f is the
focal distance. A low f-number corresponds to high resolution. Interesting insight concerning
resolution is gained when we consider another form for the f-number [12]:

f# =
k0

∆k
. (2.14)

The above expression means that the f-number is inversely proportional to the (spatial fre-
quency) bandwidth introduced by the thin lens. Now we turn to the temporal case. We
define a temporal aperture ∆τ and use the following definition for the f-number, completely
analogous to f# = f/D

f#
T =

fT
∆τ

. (2.15)

Similar to the above expression 2.14 one then obtains for the time-lens that [12]:

f#
T =

ω0

∆ω
(2.16)

This is an important relation and we will get back to it in a later paragraph about resolution
2.5.1. Essentially it means that the thin lens imparts a (temporal) frequency bandwidth to
the incoming pulse and the broader the imparted bandwidth, the better the resolution.

2.4 Imaging systems

Now that we have derived the time-domain analogs to diffraction and lenses, we are able to
build the time-domain analog of imaging systems as we know them. The classical imaging



2.4 Imaging systems 13

system consists of diffraction through air followed by a lens after which again diffraction
occurs. The temporal setup will look like this: dispersive element – time-lens – dispersive
element. An imaging system can work in two regimes. Either the imaging condition is fulfilled
and magnification (stretch) of the incoming pulse results, or we get the Fourier transform
regime in which the output pulse is the Fourier transform of the incoming pulse. In this
section we go into detail of the imaging condition and how the Fourier transform can be
established.

Figure 2.7: Transfer-functions for dispersion and time-lens action in the time and frequency domain.

The way to tackle this problem is to work with the transfer-functions for the different parts
of the imaging system. The time and frequency domain functions corresponding to dispersion
and time-lens action are given in the figure 2.7 [7]. The parameter Ω is the base-band
frequency, β21 and β22 are the second-order dispersion parameters of the first and second
dispersive element respectively.

2.4.1 Magnification regime

The setup for a temporal imaging system working in the magnification regime is the following:

Figure 2.8: Set-up temporal imaging system working as a magnifier.

As mathematically shown in the appendix A.3, the basic result of the magnification regime
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is:

A(L2, τ) =
1

2π
√
M

e
i ω0 τ

2

2M fT A(0, τ/M) (2.17)

This equation states that, except from a phase factor, the output signal is a scaled replica
of the input signal. The main step in the derivation of equation 2.17 leads to the temporal
imaging condition:

1
D1

+
1
D2

= −ω0

fT
(2.18)

The parameters D1 and D2 represent the total dispersion which the signal sees after passing
through the first and second dispersive element respectively. This expression is completely
similar to the well-known thin lens-law (with di the image distance and d0 the object distance):

1
d0

+
1
di

=
1
f

(2.19)

The magnification factor M is

M = −D2
D1

. (2.20)

Again the similarity to the spatial case M = −di/d0 is striking. Using a temporal imaging
system working in the magnification regime allows us to stretch a signal in time and as such
we can measure it using existing oscilloscopes with a much higher resolution. Magnifications
as high as M = 600 are reported [13], illustrating the great success of this regime.

After showing the magnification regime we proceed to the Fourier transform regime, which
will be the focus of the rest of this thesis.

2.4.2 Fourier transform regime

The diffraction phenomenon has an interesting property in that it can enable a spatial Fourier
transform. When an input field with finite transverse dimensions diffracts during a long travel
period, the far field appears to be the spatial Fourier transform of the original field. This is
called Fraunhofer diffraction. When the input field first passes through a thin lens and then
diffracts, the lens results in the far field being ’brought closer’, more exactly it is brought to
the focal plane of the lens, so that the wave doesn’t have to diffract over a very long distance
before it becomes its spatial Fourier transform. In the spirit of space-time duality we know
that a similar temporal regime must exist via dispersion whereby the incoming pulse evolves
to its spectrum, so that a (temporal) Fourier transform is performed. This is shown in figure
2.9. Analogous to the spatial case, the dispersion has to be very large before the Fourier
transform is established so a time-lens is used to bring the Fourier transform closer.



2.4 Imaging systems 15

Figure 2.9: Fourier transform regime [14].

There are two reciprocal ways to use the Fourier transform property. Either we send a
pulse through a time-lens followed by a dispersive element and measure the time-domain
distribution of the pulse in the back focal plane of the lens in which we obtain the spectrum
of the incoming pulse. Or we send the pulse through a dispersive element followed by the
time-lens and measure the spectrum domain distribution of the pulse in the back-focal plane
of the lens and obtain the time-intensitye shape of the pulse. Both regimes are shown in
figure 2.10. The former is called the frequency-to-time regime and the latter regime will be
exploited in the experiments of this thesis work and is called the time-to-frequency regime.

Figure 2.10: a. Frequency-to-time regime and b.Time-to-frequency regime [14].

Like the magnification regime it offers a way to use existing instruments to offer a much
higher resolution. In this case an optical spectrum analyzer (OSA) will be used to show the
time-domain intensity shape of the pulse under test.

An extensive mathematical derivation is now done for the case whereby the parametric process
of four-wave-mixing (FWM) acts as a time-lens. This derivation is needed to explain the origin
of two important relations, namely the Fourier transform condition and the time-to-frequency
conversion factor, which determine the performance of a time-lens based Fourier transform
system. These relations will be used intensively in the design and optimisation chapter of this
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thesis. In order to understand the time-lens action in the following derivation we also explain
the FWM process.

Mathematical derivation of a time-lens implemented via four-wave-mixing:

The setup is similar to the temporal magnifying imaging system. An input dispersion is fol-
lowed by a time-lens, then the signal passes through the output dispersion. An OSA then mea-
sures the spectrum of the output signal. The OSA measurement gives no phase-information
of the spectrum. Therefore the second dispersion isn’t really needed for our purpose because
it will only change the phase of the spectrum, leaving the OSA result unaffected. The setup
is schematically shown in figure 2.11.

Figure 2.11: Setup temporal imaging system working as a time-to-frequency converter.

We now start the mathematical derivation:

First dispersion step:
The signal propagates through a dispersive element and its evolution can be described by the
transfer function for second order dispersion: G (ω) = e−iaΩ2

in which a = 1
2 L1β2 = 1

2 D1.

We can thus calculate the spectrum after the first dispersive element:

A (L1,Ω) = A (0,Ω) e−1/2 iD1Ω2
. (2.21)

Remember that this is the solution of the parabolic equation for narrow-band dispersion 2.2.2.

We now take the conjugate of the above formula and do the tranformation Ω 7→ −Ω

A (L1,−Ω) = A (0,−Ω) e1/2 iD1Ω2
. (2.22)
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This expression 2.22 will be used in later steps.

Lens action:
After the dispersive element the signal travels through the time-lens. The transfer function for

time-lens action is H (τ) = e
1/4 iτ2

c in which c = 1/2 ft
ω0

. This means that the pulse envelope
Al after the lens can be written as:

Al (z + ε, τ) = A (z, τ)H (τ) . (2.23)

Because the time-lens action is obtained via FWM, the transfer function H(τ) operates on
the conjugate A of the pulse A(z, τ) just before the time-lens. So we have to adjust equation
2.23 to:

Al (z + ε, τ) = A (z, τ)H (τ) . (2.24)

To make this clear we briefly discuss the FWM process:

Figure 2.12: An idler is generated during FWM of the pump and signal pulse[15].

In general, parametric processes can easily be understood in quantum mechanical terms when
we consider that the pump and signal photons interact according to the law of energy and
impulse conservation. For four-wave-mixing two pump photons interact with one signal pho-
ton, creating an idler photon. The law of energy states that 2 · ~ωp − ~ωs = ~ωi. The result
is that the idler is at frequency ωi = 2 ·ωp−ωs. The law of conservation of impulse demands:
2 · kp − ks = ki or ∆k = 2 · kp − ks − ki = 0 which is basically a phase matching condition.
We now turn to the classical electro-magnetic point of view (nonlinear Schrödinger equation)
and write down the equation for the evolution of the idler in the FWM process [16]:

dAi

dz
= −iγ

{
AiPi + 2Ai (Pp + Ps) +Ap

2Asei∆kz
}

(2.25)

The origin of this equation lies in the NLS equation. The index i stands for idler, p for pump
and s for signal. The function A = A(z, τ) is the slowly varying envelope of the electric field
and Pn is the power of the waves such that Pn = |An|2. Also the coefficient of nonlinearity γ is
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present in this equation and implies that a highly nonlinear material is needed for (efficient)
FWM. When there is phase matching between the three waves ∆k ≈ 0. If this condition
is not obeyed the idler growth is insufficient. The pump gives energy to the signal which
gets amplified and part of the pump’s energy goes to the idler generation. In figure 2.12 the
generated idler is shown.

According to equation 2.25 the idler growth is proportional to the complex conjugate of the
signal times the square of the pump envelope. We assume the ideal case where the pump has
a constant amplitude and a quadratic phase and this way we can identify: A2

p = H(τ). The
pump wave has ideally no influence other than to impose its quadratic phase.
Hence we have shown that the transfer function operates on the conjugate of the signal in
the case of FWM.

Other parametric processes like second harmonic generation (SHG) work on the signal itself
[10]. The basic result stays the same though. We can still relate the spectrum of the idler with
the intensity of the incoming pulse, the Fourier transform condition to achieve this just gets
a change in sign. Concerning the conjugate operation, the following property of the Fourier
transform comes to hand: a(t) = g(t) 7→ A(ω) = G(−ω).

We now proceed with the calculation. Multiplication in the time domain gives a convolution
in the spectral domain, so to calculate the spectrum after the lens we take the convolution
of the spectrum of A(z, τ) before the lens with H(Ω). The Fourier transform of the transfer
function H(τ) is

H (Ω) =
√

4π i c e−icΩ
2
. (2.26)

Writing down the convolution operation gives

Al (z + ε,Ω) =
√

4π i c
∫ ∞
−∞

A
(
L1,−Ω′

)
e−ic(Ω−Ω′)2dΩ′. (2.27)

With the use of equation 2.22 and the expansion of the exponential we get:

Al (z + ε,Ω) =
√

4π i c e−icΩ
2

∫ ∞
−∞

A
(
0,−Ω′

)
e1/2 iD1Ω′2e−icΩ

′2
ei 2cΩ Ω′dΩ′. (2.28)

It is now clear that if the two factors in Ω′2 cancel out we get the inverse Fourier transform of
the initial spectrum when we identify the time paramater τ = 2cΩ. This gives the condition:

D1 = 2 c (2.29)

We can easily interpret this condition: the input dispersion should be compensated for by the
phase-modulation imparted by the time-lens. As a result after the time-lens we get:

Al (z + ε,Ω) =
√

2πD1 eiπ/4e−icΩ
2
A (0, τ) (2.30)
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This is the basic result of time-to-frequency conversion. The spectrum after the lens is pro-
portional to the input pulse apart from a phase factor.

Second dispersion step:
The idler field after the lens is Ei(z, ω) = Al(z + ε,Ω) e−i β0 z and we have now two choices:
either we send the signal after the lens directly to an optical spectrum analyzer (OSA) which
measures

|Ei (z, ω)|2 = 2πD1 |A (0, τ)|2 , (2.31)

or we can first send the signal Al through a second dispersive element with transfer function
G (Ω) = e−1/2iD2Ω2

with D2 = L2β2 to cancel the phase factor e−icΩ
2
,

Aout (z,Ω) =
√

2πD1eiπ/4e−icΩ
2
e−1/2 iD2Ω2

A (0, τ) , (2.32)

which reduces to
Aout (z,Ω) =

√
2πD1 eiπ/4A (0, τ) (2.33)

for
D2 = −2 c = −D1. (2.34)

Sending the signal Aout to an OSA results in the same formula as (2.31). This makes clear
why the second dispersion step is not needed in the time-to-frequency setup.

Discussion of the time-to-frequency regime:

Having done the analytical derivation it is important to understand the consequences of the
taken steps. We go into detail of the two obtained relations D1 = 2 c and t = 2 cΩ, which are
the above mentioned relations which determine the performance of the setup.

According to the basic relation D1 = 2 c, the main condition to end up in the Fourier
regime is that the obtained chirp of the pulse following propagation through the
input dispersive element is cancelled in the time-lens. This relates the lens-parameters
with the dispersion parameters via D = β2 L = 2 c = fT

ω0
= 1

K . The equation

D =
1
K

(2.35)

is called the Fourier transform condition.

We can also state this relation in terms of the focal GDD from section 2.3.3: D = −Df .
Therefore the dispersion the signal pulse goes through, must be the opposite of the focal
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GDD. This is similar to spatial Fourier imaging condition whereby the paraxial wave has to
travel the focal distance, after passing through the lens, before we get the Fourier transform.
The minus sign arises because the time-lens acts on the conjugate of the signal if the lens
action is established via four-wave-mixing.

The second important derived relation τ = 2 cΩ defines the time-to-frequency conversion
factor. The time-to-frequency conversion factor is crucial to calculating the duration of the
pulse via the spectrum analyzer readings. The conversion factor is stated below in terms of
the system parameters (∆ω = ∆Ω):

τ = β2 L (ω − ω0) (2.36)

Rewriting this equation in terms of the spectral bandwidth of the idler in wavelengths gives:

τ = (
λs
λi

)2DL∆λi (2.37)

or we can put it in function of the lens-parameters:

τ =
(ω − ω0) fT

ω0
. (2.38)

The possibilities of the Fourier transform regime are numerous, ranging from signal regener-
ation [17] to the above explained signal measurements [1] and to distortion-free transmission
[18] etc.

2.5 Performance of temporal imaging systems

2.5.1 Resolution

This section contains a more intuitive reasoning about resolution as the exact derivation
would take us too long. The exact way to derive the resolution of an imaging system is
by considering the impulse response of the system and applying a criterion/definition for
resolution, e.g. Rayleigh criterion [19]. In the appendix A.2 the interested reader can find
the derivation of the impulse response.
For our reasoning we first have to introduce some insights from Fourier optics. In Fourier
optics, proof is offered for the fact that a field can be decomposed as a linear superposition
of plane waves. Every plane wave has its own direction which is determined by its spatial
frequency. If we have a field propagating along the z-axis, then for every plane wave, its
spatial frequency determines the angle between the k-vector of the plane wave and the z-axis.
The higher the spatial frequency, the steeper the angle. A paraxial wave has a narrow-band
of spatial frequencies, implying that it is composed of waves which all have a direction close
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to the z-axis, leading to a field which is confined along the z-axis. A lens basically changes the
spatial frequency of every plane wave which is captured by its aperture. In doing so it redirects
these plane waves and the stronger the lens, the bigger the change in spatial frequency it can
impose. The fine details about this Fourier decomposition and spatial frequency theory can
be found in [19].

We now state the easy rule of thumb about (temporal and spatial) resolution: the smaller the
f-number the better the resolution. To show this, we turn to the spatial frequency point of
view. We can see that the larger the aperture of the lens is, the broader the range of spatial
frequencies is that will be captured by the lens and redirected by it. Hence at the image plane
more information is available to reconstruct the image because more spatial frequencies are
present. This leads to better resolution for larger aperture lenses. Equivalently we can state
that the larger the spatial bandwidth of the lens is, the higher the resolution. Equation 2.14
for the (spatial) f-number supports the above explanation.
For a time-lens same reasoning holds and when the time-lens imposes a large (spectral)
bandwidth to the incoming pulse, high resolution results. This is also clear in the expression
of the f-number 2.16 which we repeat here:

f#
T = ω0

∆ω .

The interpretation we should give to the temporal resolution of a temporal imaging system
is the following: if the resolution is determined to be τres then the output of the system for
every pulse with an initial width τs < τres, will be the same as for a pulse with an initial
width τs = τres.

2.5.2 Aberrations

The key to high performance imaging systems is to have pure second-order dispersive elements
combined with a time-lens which induces a pure parabolic phase. If this condition is not
satisfied the combination dispersion-time-lens will not create an exact Fourier transform.
In the article “aberrations in temporal imaging” [20] an extensive framework is given to
understand the effects of higher-order dispersion and phase modulation. We won’t go into
detail but give a flavour of the (visual) power of their approach. They invoke the concept
of time rays on which aberrations have a distinct effect. Each ray represents a spectral
component Ω and their slope in a space-time diagram depends on this baseband frequency Ω
and the dispersion parameters of the medium in which the pulse travels. If the medium only
exhibits second-order dispersion the slope is simply Ω. On the other hand if higher-dispersion
effects play a role, the slope S is

S = Ω
[
1 + Ω

2!
β3

β2
+ ...+ Ωn−2

(n−1)!

β(n)

β2

]
.



2.6 Conclusion 22

So we have a slope which depends on the relative values of βi/β2 with i > 2. In a space-time
diagram in figure 2.13 we can now see how deviation from the ideal Ω slope gives aberrations:

Figure 2.13: Space-time diagram showing aberrations due to higher order dispersion [20].

As for a time-lens which induces higher order phase modulation, the aberrations arise from
the fact that the focal GDD becomes time-dependent. This is because the imparted frequency
chirp becomes time-dependent. All portions of the pulse experience a slightly different chirp
rate which results in aberrations because the imaging condition or Fourier transform condition
can no longer be obeyed for the total pulse.

2.6 Conclusion

In this chapter we studied the theory of temporal imaging. To understand temporal imaging
one should constantly draw analogies between a classical thin lens imaging system and a
temporal imaging system. The key building blocks in a temporal imaging set-up are dispersive
elements and a time-lens. The dispersive elements take over the role of diffraction through
air and the time-lens is analogous to the thin lens. Essentially a dispersive element imparts a
quadratic phase modulation on the base-band frequency parameter and a time-lens imparts
a quadratic phase modulation on the time-parameter. A temporal imaging system can work
in two important regimes. The first regime is the magnifying regime whereby the signal
is stretched out in time. The second regime is the Fraunhofer regime whereby the signal
is Fourier transformed, so that the output pulse yields the spectrum. The focus of this
thesis work is on the time-to-frequency Fraunhofer regime. We retrieve the temporal
waveshape of the input signal via the spectrum of the output signal which is measured with an
OSA. Two important equations were derived which characterise an imaging system working
in the time-to-frequency Fraunhofer regime. The first is the Fourier transform condition
which states when exactly a Fourier transform of the input signal is achieved and the second
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equation yields the time-to-frequency conversion factor. The next chapter shows how this
temporal imaging system can be implemented to measure femtosecond pulses and compares
it with other existing pulse measurement techniques.
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Chapter 3

Literature review

3.1 Introduction

In the previous chapter we explained what constitutes a temporal imaging system. In this
chapter we show how we can use a temporal imaging system to measure ultrashort pulses. We
do this via a survey of three key experiments that perform a Fourier transform on the input
signal such that measurement with an OSA yields the temporal shape of the input signal.
The third of the key experiments triggered this thesis research hence we pay special attention
to the reported problems with the specific set-up. It the context of this thesis work it is
important to understand other existing pulse measurement techniques in order to compare
the performance of our researched temporal imaging system over the alternatives. Therefore
we discuss the most popular techniques to characterise ultrashort pulses.

3.2 Time-lens methods and experimental set-ups

To date there has been three different approaches to implementing the time-lens mechanism.
In this section we discuss these three key experimental set-ups which operate in the Fourier
transform regime. The three concepts include an electro-optic modulator, XPM and FWM
with chirped pulses.

3.2.1 Electro-optic modulator as time-lens

The first experiments in temporal imaging used an electro-optic modulator to impart a
quadratic phase. It avoids the use of nonlinear phenomena and as such it can produce “a
reliable phase modulation independent of optical power” [7]. The operation principle is fairly
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simple: an electro-optic modulator is used to directly modulate the phase of the signal. An
optical wave propagating through an electro-optic crystal driven with a sinusoidal voltage
with angular frequency ωm acquires a phase shift:

φ(z, τ) = Γ0 cos(ωm τ). (3.1)

The factor Γ0 = π V
Vπ

is the peak phase deviation and is defined in terms of the half-wave
switching voltage Vπ. The half-wave switching voltage1 is the voltage that must be applied
across the electro-optic crystal in order to induce a phase shift of π.
As lens action implies parabolic phase modulation, we need to isolate the quadratic part of the
sinusoidal modulation. Those quadratic parts are located under the extrema of the sinusoid.
In these regions the phase shift can be written as:

φ(z, τ) = Γ0

[
1− (ωm τ)2

2

]
. (3.2)

It is clear that the electro-optic (EO) modulator has a time aperture τa which defines the
time window during which the higher order terms of the series expansion of cos(ωm τ) are
negligible and the modulation is quadratic so that the phase shift has the form of equation
3.2. If the pulse after the dispersive element, which preceeds the time-lens, is longer than
this time aperture only the central part undergoes ideal lens action. The outer regions of
the pulse have a sinusoidal modulation and introduce aberrations in the system. Figure 3.1
makes this visually clear:

Figure 3.1: a. Sinusoidal phase modulation b. Parabolic phase modulation. [17]

It can be shown [7] that a realistic measure of this time aperture is related to the modulating
frequency ωm via:

τa ≈ 1
ωm

. (3.3)

1It is generally desirable for the half-wave switching voltage to be less than about 10 volts such that solid

state driver amplifiers can be utilized to create the electric field across the single crystal substrate[21].
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The chirp rate of the EO modulator time-lens is by definition dφ2

dτ2 = Γ0 ω
2
m, which leads to

a focal time of fT = ω0
Γ0 ω2

m
. Because we also have an expression for the time aperture from

equation 3.3, we know the f-number:

f# =
fT
τa

=
ω0

Γ0 ωm
. (3.4)

Whereby via identification with equation 2.16 we retrieve the bandwidth imposed by the lens:
∆ω = Γ0 ωm. It is immediately clear that if we want a small f# and thus high resolution
for a fixed ωm, we have to increase Γ0 which effectively means a large applied voltage so that
the applied maximum phase shift increases. This also shows the deficiency of the proposed
time-lens. The maximum possible phase shift is 10π [1] due to the limit in possible applied
voltage and so the modulor frequency ωm has to increase drastically if we wish to improve
the resolution.

We now focus on the results of the experiment presented in the article: “Time-to-frequency
converter for measuring picosecond optical pulses” [2]. The time-lens is a LiNbO3 electro-
optic phase modulator which has a Γ0 = 51 rad and ωm = 2π × 5.2 GHz. We calculate the
time-to-frequency conversion factor via formula 2.38 from chapter 2 :

∆t =
fT
ω0

∆ω =
1

Γ0 ω2
m

c 2π
λ0

∆λ, (3.5)

in which c is the speed of light. The numerical value of the time-to-frequency conversion factor
is 30.3 ps/nm. The time aperture is 31 ps and the theoretical resolution (= 2.7/(Γ0 ωm)[22])
is 1.7 ps. The measured pulse width is a spectrum analyzer limited 0.08 nm and as a result
the measured resolution is 3 ps (' 30.3× 0.08 ps). The set-up and results of this experiment
are shown in figure 3.2

Figure 3.2: a. Experimental set-up using a EO modulator as time-lens b. Measurement result
showing a resolution of 3 ps [2].
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3.2.2 XPM with parabolic pulses as time-lens

The second key experiment implementing the time-lens function is described in the paper
‘Linear-distortion compensation using XPM with parabolic pulses’ [23]. The technique used
here involves the use of cross-phase modulation (XPM) in a nonlinear fiber. The XPM prin-
ciple is the following: an intense pump pulse modulates the refractive index ñ of a nonlinear
material and a copropagating signal wave sees this varying refractive index so its phase is
modulated accordingly (φ = ñ k0 L). This is a consequence of the optical Kerr effect [9]:

ñ(ω, |E|2) = n(ω) + n2 |E|2 (3.6)

in which |E|2 is the optical intensity inside the fiber and n2 is the nonlinear-index coefficient.
In the case of parabolic pulses the change in the index ñ is parabolic which imposes a quadratic
phase modulation and thus establishes time-lens action. The chirp rate of the time-lens is
adjusted by a variation in the power of the parabolic pump pulses. Or as stated in the paper:
“The XPM induces a chirp on the target pulse which is proportional to the gradient of the
parabolic pulse intensity profile”.
The aim of this paper is to remove (time domain) distortions due to second order dispersion
from a signal. The set-up works in the frequency-to-time regime whereby the spectrum of the
incoming pulse is transferred to the time-domain output pulse. We know from chapter 2 that
we then must satisfy the condition that the parabolic phase caused by the lens is compensated
for by the following dispersive element:

K = − 1
β2 L

.

When the time-lens is preceded by a dispersive element, this doesn’t change its frequency-to-
time property as the spectrum before the lens is not altered by dispersion.
When we work with signals which have the same shape in time and frequency domain, such as
Gaussian or Sech pulses, we can imagine to completely reconstruct the incoming pulse when
we obey a new condition such that the frequency-to-time conversion factor scales the output
pulse to have the same FWHM width as the incoming (undistorted) pulse. For a Gaussian
pulse u(0, t) = Aexp(− t2

T 2
0

) this reconstruction-condition is derived in [18] and is simply:

K = 1
T 2
0

.

The experimental set-up (see figure 3.3) is the following: A parabolic pump pulse of 10 ps
at a center wavelength of 1542 nm is generated using pulse shaping in an super-structured
fiber Bragg grating (SSFBG) [24]. The signal pulse is 3 ps long at 1556 nm. An optical delay
line ensures that the signal and pump pulses temporally overlap before they are sent into 200
m highly nonlinear fiber (HNLF) with zero dispersion wavelength (ZDW) at 1550 nm and
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γ = 20 1
W km . Highly nonlinear fiber is used because it has a high n2(∼ γ) so that a variation

in |E|2 is clearly reflected in the refractive index ñ. The quasi-symmetrical position of the
signal and pump wavelength towards the ZDW allows minimized walk-off2 in the HNLF. After
propagation in the HNLF the signal is filtered out via a 3 nm bandpass filter centered at 1556
nm and then it is sent through 150 m of SMF which acts as the dispersive element.

Figure 3.3: a. Experimental set-up using XPM as the time-lens mechanism b. Determination of
the operation point for the average pump power so to obey the Fourier transform and
reconstruction condition[23].

An important part of the work is to find the correct pump power to achieve the desired
chirp rate K so that both the Fourier transform and reconstruction condition are achieved.
This is done by varying the pump power and measuring the output pulse width for various
input dispersions. The pump power which offers an output pulse width independent of the
preceding input dispersion indicates the correct operation point, which is 90 mW of average
pump power for this set-up. This method is displayed in figure 3.3.

The results are presented in figure 3.4 where the output pulse has the same width irrespective
of the input dispersion (no dispersion, 100m SMF, 200m SMF) before the time-lens. The
distortions due to dispersion of the incoming pulse are indeed completely removed and the
authors succeeded in their experiments. The values associated to each pulse profile in the
figure refer to the FWHM of the autocorrelation traces rather than the FWHM of the intensity
profiles.

2 Walk-off means that the two pulses experience diminishing temporal overlap with increasing traveled

distance because they see a different group velocity in the fiber.
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Figure 3.4: a. Input signal pulse width after varying input dispersion b. Signal pulse width af-
ter total set-up, showing complete compensation of the distortions caused by the input
dispersion[23].

To conclude this section we remark that using XPM as a time-lens is an attractive method
and that the pump pulse has the desired parabolic shape as shown in the paper. The main
drawback is the practical implications of making a parabolic pulse with different temporal
widths. For every width you have to make a new SSFBG. The width of the parabolic pulse
is important because it reflects which signal pulses can be transformed. If the signal pulse is
broader than the parabolic pump pulse before entering the HNLF, only part undergoes lens
action.

3.2.3 FWM with chirped pulses as time-lens

The third and final key experiment we discuss is very important as it triggered this research
as explained in the introduction. It is a fundamental breakthrough in temporal imaging which
allows direct measurement of the intensity of a sub-picosecond signal over a record length of
100 ps combined with a resolution of 220 fs. The paper in which the results are presented is:
‘Silicon-chip-based ultrafast optical oscilloscope’ [1]. It is a follow-up of another important
article which demonstrates the time-lens capabilities of four-wave-mixing in a silicon-chip [25].
The set-up works in the time-to-frequency regime whereby the intensity profile of the input
is transferred to the spectral domain via the dispersion - time-lens set-up. It is one of the
many experiments based on parametric processes as a time-lens. In the parametric process a
chirped pump impresses its parabolic phase onto the signal during interaction in a nonlinear
medium, hence lens action is obtained. In the set-up four-wave-mixing (FWM) is used be-
cause it offers two important advantages over other wave-mixing processes. Firstly FWM is a
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process which happens in every material because it originates in the third-order susceptibility
χ3 which all materials possess3. Secondly, the generated idler wavelength is relatively close
to the pump and signal wavelength so if wanted we can have all three signals in the same
telecommunications-band (S,C or L).

The set-up of the reference paper [1] is shown in figure 3.5.

Figure 3.5: Silicon-chip-based optical oscilloscope using FWM as the time-lens mechanism[1].

The authors chirped the pump pulse in a simple way so that it could obey the Fourier
transform condition 2.35: Ds = β2s Ls = 1

K with K the chirp rate of the time-lens, β2s the
group-velocity dispersion (GVD) parameter and Ls the length of the dispersive fiber through
which the signal is sent. In summary: if you want a FWM time-lens with a focal group
delay dispersion (focal GDD) with value D, then you need a pump pulse which
sees twice that dispersion D. The evolution of the phase of the pump and signal when
Dp = 2Ds is shown in figure 3.6.

3The second-order susceptibility χ2 responsible for e.g. sum-frequency-generation vanishes for isotropic

materials



3.2 Time-lens methods and experimental set-ups 31

Figure 3.6: Evolution of the signal (left column) and pump (right column) in time and frequency do-
main before (upper 2 rows) and after (lower 2 rows) their respective dispersive elements.

To explain this, we have to remember section 2.4.2, where we derived that the squared envelope
function of the pump establishes the lens action. This leads to the requirement that:

exp (i 2φpump) = exp (i
K

2
τ2) (3.7)

in which the right-hand side is the transfer function of a time-lens. If we send the pump
through a dispersive fiber with β2p and length Lp and put Dp = β2 Lp, the pump wave
obtains a phase of the form φpump = τ2

2Dp
. Via identification with equation 3.7 we obtain:

1
Dp

=
K

2
=

1
2Ds

(3.8)

We can thus conclude that to satisfy Fourier transform regime condition, the pump should be
subject to twice as much dispersion as the signal. This relation Dp = 2Ds is clearly indicated
in figure 3.5 where the pump pulse from a mode-locked laser passes through a total dispersion
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of 2D and the signal undergoes a dispersion of only D.

If we choose the β2 parameter of both dispersive fibers to be the same β2s = β2p, this equation
implies that the pump pulse should travel through a fiber which has twice the length of the
fiber through which the signal passes: Lp = 2Ls. The latter choice is used in the experiment.
They use the same type of fiber for both the pump and signal but the pump passes through
100 m while the signal passes through 50 m of the fiber.

The time-to-frequency conversion factor is given by 2.36:

∆τ = β2 L∆ω.

The factor ∆ω is the spectral bandwidth of the idler ∆ωi which is measured with an optical
spectrum analyzer (OSA). When we assume a very narrowband spectrum for the signal it is
solely determined by the spectral bandwidth of the pump pulse. This is because for the FWM
process the following equation holds: ∆ωi = 2 ∆ωp − ∆ωs ≈ 2 ∆ωp in which we assumed a
negligible spectral width of the signal. We can thus rewrite the conversion factor as:

∆τ = β2 L∆ωi ≈ 2β2 L∆ωp = ∆τrec. (3.9)

The last equality shows that this relation also gives the maximum duration of a signal which
can be recorded. The reason behind this is that in general a signal has a spectral bandwidth
and thus ∆ωi can only decrease. For the experimental set-up in the article the numerical
values give a conversion factor ∆τ

∆λ = 5.2 ps
nm which implies a very long record length τrec of

150 ps (≈ 5.2 ps
nm × 2× 15nm) for a pump bandwidth of 15 nm.

The following important parameter of the temporal imaging system is the obtained resolu-
tion. As stated in the article: “The temporal resolution of the osciloscope is predicted by
considering the transfer of a temporal delta function through the instruments system. This
impulse response is precisely the temporal resolution of the instrument.” [1]. This leads to the
following expression for the resolution if all components are perfect:

τresolution =
τpump√

2
(3.10)

where τpump is the inital pump pulse width. This pulse width is inversely proportional to its
spectral width ∆ωp of the pump pulse, so once again we obtain the relation that the resolution
is better for a larger bandwidth imposed by the time-lens. The predicted resolution for the
set-up is 200 fs for the used 280 fs pump pulse. A small remark though: the relation in
equation 3.10 is based on the assumption of an infinite FWM conversion bandwidth which is
of course impossible to obtain, so it is merely a guideline rather than an exact expression.

We now turn to the published experimental results. In figure 5.3.1 the record length and
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resolution of the system is determined. The record length is retrieved by inserting a (Gaussian)
signal pulse with a width of 342 fs and varying its temporal position. As the result shows,
the authors could scan the pulse over a record length of 100 ps. To obtain the resolution the
following equation is used [1]:

τ2
measured = τ2

actual + τ2
resolution

which for the experiment results in:

(407fs)2 = (342fs)2 + (220fs)2

so the temporal resolution is determined to be 220 fs. This is very close to the (theoretical)
resolution of 200 fs, which is solely limited by the initial pump pulse width.

Figure 3.7: Characterization of the record length and resolution of the optical oscilloscope by scan-
ning a 342 fs Gaussian input signal through the record length[1].

The single-shot capability of the temporal imaging system is also demonstrated, hereto the
OSA is replaced by a single-shot spectrometer (infrared camera). Three single-shot optical
waveforms composed of two pulses with temporal separations of 86 ps, 27 ps and nearly
temporally overlapping are measured and presented in figure 5.3.4. The measurements are
compared with a multiple-shot cross-correlator[26]. The measurement shows interference
fringes (red) with a period of 3 ps which are caused by the overlapping of the two pulses. The
resolution in this set-up is limited by the used infrared camera, using a better (commercially)
available camera can utilize the full record-length-to-resolution ratio (150 ps / 220 fs) of the
optical oscilloscope.
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Figure 3.8: Single-shot measurement of the optical oscilloscope compared with the multiple-shot
cross-correlator [1].

In the article several practical constraints are mentioned. First of all: third order dispersion
(TOD) in the dispersive fibers leads to aberrations. A pump signal distorted by TOD doesn’t
impose the desired perfect quadratic phase. Secondly the FWM conversion bandwidth has
an influence on both the record length and resolution. Finally the spectrometer performance
is ultimately the limiting factor for the temporal resolution. In the following chapter these
issues are tackled and expanded to gain insight of the different system parameters.

3.3 Alternative pulse measurement schemes

To understand the value of the measurement technique which is explored throughout this
thesis work, it is necessary to compare it with other existing pulse measurement methods.
This section highlights three of the most popular characterization techniques that are utilised
for ultrashort pulse measurements.
The first method, autocorrelation, gives an indication of the measured pulse width and shape,
while the second, frequency resolved optical gating (FROG), gives amplitude and phase in-
formation hence allowing a complete characterisation of the pulse. The third method, optical
sampling, is an intensity measurement technique and allows us to use the already existing
slow-detectors to measure femtosecond pulses. In principle one would like to avoid the need
for nonlinear effects as a measurement tool because this generally puts restrictions on the
power which is to be used. But as will be clear after this section, nonlinear processes offer an
easy way to extract information from a pulse. There are few measurement techniques that
allow us to simultaneously retrieve the optical waveform and its phase for ultrashort laser
pulses. Both of them are necessary if one wants to fully characterise an optical pulse. Also
the optical time-lens oscilloscope doesn’t allow us to get both the amplitude and phase of
the signal. Its main advantage is its femtosecond accuracy and the fact that it is a direct
single-shot measurement, and thus rapidly updateable.
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3.3.1 Autocorrelation

In an intensity autocorrelator one splits up the pulse that has to be measured in two equal
pulses. These replicas are variably delayed with respect to each other in such a way that
the pulses scan through each other, it is thus self-referenced. The resulting beam is then
focussed onto a nonlinear crystal where second harmonic generation (SHG) takes place. In
the case of temporal overlap in the crystal a second harmonic beam will be generated. This
beam is proportional to the intensity of the incoming field, which in this case results in:
I = (E(t)+E(t−τ))2. This intensity has the crossproduct E(t)E(t−τ) which is very valuable
because when a slow detector measures this crossproduct one obtains the autocorrelation
intensity of the signal. Mathematically this becomes [27]:

R (τ) ∝
∫ ∞
−∞
|E (t)E (t− τ)|2 dt =

∫ ∞
−∞

I (t) I (t− τ) dt (3.11)

in which R(τ) is the detected signal. In figure 3.9 the working principle is shown.
In the autocorrelator this crossproduct is filtered out spatially and detected by a photodetec-
tor. Some important remarks are to be made though: first of all, the direction of the pulse
can’t be retrieved by this method as R(τ) = R(−τ). Secondly for every different type of
pulse there is a different conversion factor to calculate the duration of the signal pulse. For
example, if the incoming pulse is Gaussian then the duration of the measured signal (also
Gaussian) has to be divided by 1.41. This can lead to misleading results as the input pulse
shape is often not known in advance. Furthermore as pointed out in certain in literature
[28], complex pulses can show the same quasi-Gaussian autocorrelation trace although they
are quite different. In short the autocorrelator is relatively easy to understand and use, but
awareness of its ambiguity is necessary.

Figure 3.9: Working principle of an autocorrelator [29].



3.3 Alternative pulse measurement schemes 36

3.3.2 FROG

The acronym FROG stands for Frequency Resolved Optical Gating. It is classified as a
spectrographic pulse characterisation technique. The output of a FROG-measurement is a
spectrogram that shows how the spectral density of a signal varies with time. Examples of
a spectrogram are shown in figure 3.10. It shows how the spectrogram of a Gaussian pulse
varies according to its frequency chirp, hence showing that the measurement is sensitive to
phase information.

Figure 3.10: The spectrogram trace of a Gaussian pulse varies according to its frequency chirp [30].

Its working principle is very similar to that of an autocorrelator, the main change is at the
detector side. Instead of measuring the signal temporal intensity I vs. delay, FROG involves
measuring the signal spectral intensity S vs. delay. The spectogram trace is given by [27]:

S (τ, ω) =
∣∣∣∣∫ E (t)G (t− τ) eiωtdt

∣∣∣∣2 (3.12)

In which E(t) is the pulse, and G(t) is the gating function. The product E(t) ∗ G(t − τ) is
called the signal field Esig(t, τ). It is possible to show that E(t) can be obtained from the
signal field Esig(t, τ) when there is a functional relationship between E(t) and G(t)[31],[32].
Therefore one extracts Esig(t, τ) from the measured trace S (τ, ω) which is a so-called 2D
phase-retrieval problem.

Depending on the FROG implementation, certain ambiguities exist which need to be consid-
ered. In particular for the widely used SHG FROG[33], similar to the autocorrelator, there is
a temporal ambiguity, and in addition there exists an ambiguity in the direction of the phase.
[[34],[31]].

The resolution of a FROG measurement is very high as one can even measure 4.5 fs pulses
[35]. An important disadvantage is the fact that FROG measurements cannot be used to
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measure a pulse train with a small amplitude modulation as it will average over the height of
the pulses.

3.3.3 Optical sampling

A very interesting method to perform a waveshape measurement is optical sampling. As our
fastest electronic devices are too slow to measure ultrashort pulses due to the relatively long
sample durations [36], one has to find a way to decrease the sample duration. By sampling
with femtosecond (optical) pulses, the necessary accuracy can be obtained. The basic principle
is as follows: the signal is combined with a low-repetition rate sampling pulse in a nonlinear
medium creating an idler when temporal overlap occurs. For each sample we have an idler
pulse with an energy proportional to the power of the signal at the position of temporal overlap
with the sampling pulse. These idler pulses can be measured by a photodetector whereafter
the temporal profile of the signal intensity can be displayed on an electrical oscilloscope. The
sample pulse duration is a measure for the resolution. The operation principle is visualised
in figure 3.11.

Figure 3.11: Principle of sampling an optical signal by four-wave mixing with a pump pulse train of
low repetition frequency [37].

Recent research [37] uses FWM on a chalcogenide chip as the idler generating effect. The
advantage is that this chip offers a very broad conversion bandwidth for FWM which is
necessary because to measure short pulse widths, which have a corresponding broad spectral
width, the center wavelengths of the pump and signal are required to be spaced far apart so
that no spectral overlap occurs between the signal and pump spectrum.

Optical sampling cannot be used for measuring non-repetive pulses because it depends on
averaging over a great number of similar pulses, yielding the shape of that pulse. Hence, like
the FROG limitation, it doesn’t allow us to do single-shot measurements of an amplitude
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modulated pulse train.

3.4 Conclusion

In this chapter we gave an overview of the three main experimental set-ups that can be used to
implement a time-lens for ultrashort measurement of (sub-) picosecond pulses. Clear reasons
are given why FWM is preferred over the EO modulator and XPM implementation. Basically
an EO modulator cannot provide subpicosecond resolution and the XPM implementation is
not flexible nor tunable enough, as for every type of signal an optimal pump pulse should be
created via a new design of a fiber bragg grating.
Many other pulse characterisation techniques exist and we described the most popular of
which include autocorrelation, FROG and optical sampling. Although our time-lens imple-
mentation doesn’t allow us to measure the phase of the pulse, it does have the potential to
measure complicated pulse shapes exactly over a long record time. Furthermore it can achieve
single-shot measurements of amplitude modulated pulse trains which offers a great advantage
over FROG and optical sampling.
In the next chapter we focus on the FWM time-lens implementation and investigate if we can
optimize the FWM time-lens set-up of the third key experiment [1].
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Chapter 4

Design guidelines and optimisation

of the FWM time-lens set-up

4.1 Introduction

As outlined in chapter 3, we have chosen to implement the time-lens method which uses FWM
to perform a Fourier transform on the signal. This FWM time-lens method is preferred
because it can accurately measure femtosecond pulses while the EO-modulator only offers
sub-picosecond resolution. Additionally it is also a more tuneable method than the XPM
time-lens (which also offers femtosecond resolution). The essential operation of a FWM time-
lens is to impart the parabolic phase of a linear chirped pump pulse on the dispersed signal
via four-wave-mixing in a nonlinear medium. This chapter explores the different aspects of
the FWM set-up which is demonstrated in figure 4.1.

Figure 4.1: Temporal imaging via the FWM time-lens set-up which is investigated in this thesis
work.

The FWM set-up consists of the two basic building blocks of a temporal imaging system,
namely a dispersive element and a time-lens. The authors of reference [1] demonstrated a
time-lens on chip using dispersion compensating fiber (DCF) as dispersive element and FWM
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on a silicon chip as the time-lens. We investigate their set-up via simulations in Matlab®.
The simulations are based on the nonlinear Schrödinger equation which we solve via the split-
step Fourier method which is explained in the first section. The results of the simulations will
show why we opt in this thesis to use a reconfigurable pulse shaper as the dispersive element
instead of a fiber and FWM on a chalcogenide chip as the lensing element.
The first series of simulations explores the influence of the use of a fiber as the dispersive
element via simulations assuming an ideal time-lens. This is also a proof-of-concept of the
Fourier transform regime of the temporal imaging system, hence we can verify the results
from chapter 2. Furthermore the simulations are used to determine how much dispersion
is needed and when third order dispersion (TOD) aberrations come into play. The second
series of simulations studies the influence of the FWM time-lens assuming a perfect dispersive
element which doesn’t show TOD.
The next part of the chapter constitutes a detailed survey of all influencing parameters of the
FWM time-lens set-up which leads to a design strategy. The design strategy is focused on the
measurement of Gaussian signals as this can serve as a general guideline for more complex
signals. We will also show that the FWM time-lens set-up can be used to measure a pulse
train with varying amplitude, showing its advantage over spectrographic pulse measurement
techniques like FROG and optical sampling, neither of which are capable of measuring this
type of pulse train.
To finish the chapter we clearly state the advantages of using a pulse shaper as the dispersive
element and how we we can implement the FWM time-lens set-up using the pulse shaper.
Essentially the use of a pulse shaper will strongly reduce TOD aberrations and allows us to
create a reconfigurable set-up where the performance can be adjusted according to the signal
it has to characterize.
Small remark for the reader: there will be four types of fiber used in the simulations, namely
SMF, DCF, HNLF and chalcogenide waveguide. Their characteristic parameters are given in
the appendix A.4 and are not changed throughout the simulations unless stated otherwise.

4.2 Split-step Fourier method

The split-step Fourier method [9] is a popular way to solve the pulse propagation in nonlinear
dispersive media. Its starting point is the nonlinear Schrödinger equation:

∂A

∂z
= − i

2
β2
∂2A

∂τ2
+

1
6
β3
∂3A

∂τ3
+
i

24
β4
∂4A

∂τ4
−α

2
A+i γ |A|2A− γ

ω0

∂

∂τ
(|A|2A)−i γ TRA ∂

∂τ
(|A|2).

(4.1)
We now rewrite this equation via the operators N̂ which describes the nonlinear effects and
D̂ which incorporates dispersion:

∂A

∂z
= (D̂ + N̂)A (4.2)
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with

D̂ = − i β2

2
∂2

∂T 2
+
β3

6
∂3

∂T 3
− α

2
(4.3)

and

N̂ = i γ (|A|2 +
i

ωi

1
A

∂

∂T
(|A|2A)− TR ∂|A|

2

∂T
). (4.4)

The main assumption of the method is that the dispersion and nonlinear operator act inde-
pendently over a small distance h. This way for every step with distance h we first solve the
equation for D̂ = 0, followed by solving for N̂ = 0. We can thus write:

A(z + h, T ) = exp(hD̂) exp(hN̂)A(z, T ). (4.5)

Instead of solving the equation in the time-domain we turn to the frequency domain. We
thus replace the differential operator ∂

∂T by i ω and the exponential operator action is then
described via the Fourier transform FT :

exp(hD̂)B(z, T ) = F−1
T exp(h ˆD(iω))FT B(z, T ). (4.6)

These equations can easily be implemented in Matlab®. A few iterations are needed for
acceptable accuracy so that if for example we want to simulate the propagation of a pulse
over a length of 1 m we iterate 10 times with h = 0.1 m. The number of iterations depends
on the value of the dispersion parameters and the length of the pulse.
The method can be made more symmetrical which improves the accuracy. Instead of one
dispersion step and one nonlinear step for every distance h, we then have the nonlinear step
surrounded on either side with a dispersion step. This is called the symmetrized split-step
Fourier method and it is used in the written Matlab® code.

4.3 Ideal time-lens

The aim of this section is to understand what the influence is of the fiber as dispersive element,
so we assume an ideal time-lens which imparts a perfect parabolic phase. We simulate the
following set-up: dispersivefiber - ideal time− lens - OSA .

4.3.1 Proof-of-concept

The first simulation shows how a super-Gaussian input pulse is reproduced in the spectral
domain. We choose a super-Gaussian pulse as it has a clear square-like shape, hence aberra-
tions are easily recognized. The input pulse has a τFWHM of 500 fs (t0 = τFWHM/1.665) and
is of the fifth order (m=5):

A(z, τ) = exp(−1/2 ( τt0 )m)
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We simulate a 50 m long fiber and compare between SMF (standard Single Mode Fiber) and
DCF (Dispersion Compensated Fiber) with and without incorporating third-order dispersion
(TOD). The results are shown in figures 4.2 and 4.3 . The green curve represents the spectrum
of the idler and the blue curve is the incoming signal. We normalize both curves and we apply
the time-to-frequency conversion factor (t = ∆ω/K) to scale the (baseband) frequency axis
to the time axis. As expected the spectrum of the idler is the same as the intensity profile
of the incoming super-Gaussian in the time domain when we ignore TOD and this for both
SMF and DCF. This is shown in figures 4.2.a and 4.3.a.

Figure 4.2: a.Frequency-to-time converted idler spectrum (green) reflecting the input pulse (blue)
via the ideal time-lens set-up with 50 m SMF without TOD and b. with 50 m SMF with
TOD.

Figure 4.3: a.Frequency-to-time converted idler spectrum (green) reflecting the input pulse (blue)
via the ideal time-lens set-up with 50 m DCF without TOD and b. with 50 m DCF with
TOD.

As can be clearly seen, the inclusion of TOD effects results in an asymmetric idler spectrum
and the introduction of a long oscillating tail. This is the expected behaviour of TOD[9].
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We notice a distinct difference between SMF and DCF fiber as shown in figures 4.2.b and
4.3.b. The aberrations in the case of SMF are larger, because the dispersion slope is smaller
in DCF. This is also the reason why the authors of reference [1] chose DCF as the dispersive
fiber instead of SMF as they work with sub-500 femtosecond signals.

The distance after which the aberrations come into play is strongly dependent on the type of
input pulse. For a 500 fs super-Gaussian with m=5 after only 1 m of DCF we can already
observe aberrations, while for a Gaussian (m=1) with same duration, the first TOD-effects
need 100 m of DCF to develop as shown in figure 4.4[a.]. This is a consequence of the fact
that the steeper the edges of a pulse (more spectral bandwidth), the stronger the dispersion
affects the pulse. Via the same reasoning we understand that also shorter pulses suffer more
from TOD. A Gaussian pulse of 250 fs already shows TOD-aberrations after 40 m of DCF.
This is shown in figure 4.4[b.].

Figure 4.4: a. Evolution of a 500 fs Gaussian (blue) after 100 m DCF (green) b. Evolution of a 250
fs Gaussian (blue) after 40 m DCF (green).

This observation shows the first trade-off with a fiber as the dispersive element: if we want
to measure a very short input pulse or a pulse with steep edges, the length of the dispersive
fiber has to decrease because of TOD, which leads to a smaller record length via:

τrec = β2 L · 2 ∆ωp.

Figure 4.5 shows a rough estimate for the length L for which third-order aberrations start to
play an important role as a source of aberrations in the ideal time-lens set-up for Gaussian
pulses. If one wants to design a compact set-up, so to have a short length L, it is no longer
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Figure 4.5: Dispersive fiber length (DCF) after which TOD aberrations come into play as a function
of the initial pulse width for Gaussian pulses.

TOD which is an issue but merely the total amount of dispersion DT needed to make the set-
up work. We can define a minimum amount of dispersion via the dispersion length LD = t20

β2

[9] which is the length after which the pulse is significantly distorted by dispersion:

Dmin = LDD = t20
2π c
λ

(4.7)

If DT < Dmin the pulse isn’t affected by dispersion and hence it is as if there is no dispersive
element in the set-up. Another issue is the idler bandwidth which grows inversely proportional
to DT . Consider the time-to-frequency conversion factor 2.37

∆τ = (λsλi )
2DL∆λi = (λsλi )

2DT ∆λi,

in which DT is the total dispersion. The idler bandwidth ∆λi is thus:

∆λi = ∆τ
(λs
λi

)2DT
.

The broadening of spectrum of the idler is inverse proportionally to total amount of dispersion
DT . Imposing a small dispersion implies the need for an OSA which is capable of measuring
large spectral bandwidth. But more importantly, if we consider a wave-mixing process as the
time-lens action then the generated idler should have a very broad spectrum which implies a
broad spectrum for the pump (conservation of energy) and consequently an ultrashort pump
which will immediately degrade because of TOD. So this shows the limits for the use of small
dispersion values.
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4.3.2 Sensitivity to the Fourier transform condition

In this section we simulate a set-up in which the Fourier transform condition is not exactly
obeyed. As shown in figure 4.6[a] the idler spectrum of a 1 ps super-Gaussian (m=5) pulse
immediately shows serious aberrations. For a 1 ps Sech pulse the aberrations are less serious
as demonstrated in 4.6[b].

Figure 4.6: Impact of deviating 1%, 5%,10% from the Fourier transform condition on the frequency-
to-time converted idler spectrum for a a. super-Gaussian pulse and b. Sech pulse.

Just like for TOD aberrations, short and broad bandwidth pulses are affected the most.

4.4 FWM time-lens via NLS

In this section we discuss the consequences of the use of four-wave-mixing as a time-lens. The
pump pulse’s chirp is one delicate factor but especially the interaction between the pump and
signal pulse in the spectral domain needs to be studied. Therefore we no longer assume an
ideal time-lens (purely quadratic phase modulation) but implement it as the interplay of the
pump and signal pulses which is described by the nonlinear Schrödinger equation.

4.4.1 Proof-of-concept

The first simulation is a proof-of-concept that FWM can indeed be used as a time-lens mech-
anism.

We simulate a 342 fs sech input pulse and a 280 fs Gaussian initial pump pulse. We send the
input pulse through 50 m of DCF fiber and the pump pulse through 100 m of the same type
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of DCF fiber. Furthermore we choose β2(λs) = β2(λp). This makes sure that we obey the
condition Dp = 2Ds = 2D which was derived in 3.2.3. We put β3 to zero so that if we notice
aberrations, it is purely because of the used time-lens mechanism. We then send both pulses
simultaneously through a chalcogenide waveguide where the FWM takes place. As the pump
pulse and signal pulse have a different center wavelength, λsignal = 1515 nm and λpump = 1585
nm and travel through a different length of DCF, they will not temporally overlap at the
chalcogenide chip waveguide, breaking a necessary condition for FWM. Therefore we send the
signals in their respective DCF fibers with the appropriate time delay to establish temporal
overlap. This is made clear in figure 6.1 where the blue curves show the initial signal pulse
and the signal after traveling 50 m through the DCF (thick). The green curves show the
initial pump pulse and the pump2 pulse after traveling 100 m in DCF (thick). After their
travel through the dispersive fiber the pump and signal temporally overlap.

Figure 4.7: Evolution of the input and pump pulse after dispersion D and 2D respectively.

The next figure 4.8 shows the spectrum of the total field (signal + pump + idler) after the
FWM-process in the chalcogenide chip. The pump (λp = 1585 nm) and signal (λs = 1515 nm)
wavelength are far apart so that the idler doesn’t spectrally overlap with the pump spectrum.
The idler is at 1662.5 nm so it is not visible in this picture which zooms in on the pump and
signal spectrum.
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Figure 4.8: Spectrum signal and pump after the FWM process.

The key figure though is figure 4.9 which proves that the spectrum of the idler reflects the
intensity profile of the incoming sech pulse.

Figure 4.9: a. Normalized spectrum idler and b. Frequency-to-time converted spectrum idler, both
reflecting the Sech shape.

We determine the FWHM spectral bandwidth of the idler to be 0.12 nm and with the time-
to-frequency conversion factor equation 2.37 in terms of ∆λ and the dispersion D of the DCF
fiber we get:
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∆τmeas = (λsλi )
2DL∆λ = 0.83 87 ps

nmkm 0.050km 0.12nm = 0.433 ps

The ideal resolution is τpump/
√

2 = 280 fs/
√

2 = 200 fs. Given this resolution we calculate
the actual pulse width from τmeas: τact =

√
τ2
meas − τ2

res = 0.384 ps [1], which is close to the
simulated signal length of 0.342 ps, indicating that the concept works. There is a discrepancy
of only 42 fs while the used time step in the simulation was 30 fs.

It is important to realize that the dispersion parameter β2 is wavelength dependent hence the
choice β2(λs) = β2(λp) is in general not possible. Recall that it is the total dispersion of the
pump which has to be twice the total dispersion of the signal. As the pump and signal are at
different wavelengths, their β2 differs and thus sending the pump through twice the length of
the dispersive element of the signal is in principle not enough.

4.5 Design guidelines

In this section we want to give a framework to fit in the influence of the different parameters.
We first repeat the two basic equations which are a measure for the performance of our system:

τrec = 2β2 L∆ωp

τres = τp√
2

Just by looking at the equations we know that if we have a very short pump pulse (small τp
and large ∆ωp) we increase the record length and achieve better resolution. The parameter β2

is relatively fixed for us because it depends on the type of dispersive element used. Generally
this is DCF, as it minimizes the third-order-dispersion aberrations. So at first glance it comes
down to maximizing the length parameter L and spectral bandwidth of the pump. But an
increase in L can lead to TOD issues if the signal pulse is short as shown in 4.3.1. Also
increasing ∆ωp means that in the dispersive path of the pump TOD comes into play which
leads to non-ideal lens action. There are two issues though which make it more complicated
than this. The first issue is temporal overlap during the FWM process, which is, except from
a synchronization issue, also dependent on the relative duration of the pump and signal pulse.
The temporal overlap is essential because otherwise only part of the signal will undergo lens
action. The second issue is spectral overlap which is unwanted because we need to filter
out the idler after the FWM. Spectral broadening due to SPM1 in the HNLF can cause this
overlap so it also restricts the (peak) powers we’ll use.

1SPM is the acronym for self-phase-modulation, a nonlinear effect originating in the optical Kerr effect.

SPM causes the pulse intensity to modulate the refractive index. Hence the pulse changes its own phase,

resulting in a distorted signal spectrum.
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We will now study in more detail the following design issues:

• optimal length dispersive elements

• influence of spectral overlap between signal and pump pulse

• influence of temporal overlap between signal and pump pulse

• walk-off in HNLF

After these individual discussions we shall be ready to implement a design strategy.

4.5.1 Length dispersive element

If we assume a Gaussian pulse the criteria for third-order dispersion to become significant is
[9]:

t0 |β2

β3
| 6 1

For the used DCF fiber and converting to tFWHM we get the condition:

tFWHM 6 4.5 fs.

This criteria states that if we send in a 4.5 fs (Gaussian) pulse we will immediately get
distortions. In our set-up TOD will not dominate from the beginning as long as we work with
longer signals, but its influence is large enough to distort a >4.5 fs pulse when the distance
travelled by that pulse is long enough.
The way to choose the length L of the dispersive element is via a simulation of the ideal-
lens set-up as shown in section 4.3 with the desired signal. As long as there are serious
deviations from the expected performance the length must decrease. Once the length is
determined for the signal a similar simulation must be done for the pump pulse which travels
over approximately two times the length if β2(λsignal) ≈ β2(λpump). If the pump pulse also
suffers from TOD, again a decrease in length must follow. As the length through which
the signal travels will decrease accordingly, we are guaranteed to have no aberrations on the
(parabolic) phase of the signal and on the phase of the pump.
Having a length shorter than the length after which TOD comes into play, is a fundamental
constraint for the choice of the length L.
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4.5.2 Temporal overlap

To have FWM the two pulses must temporally overlap. The less they overlap the less idler
will be generated. We recall that for FWM we have

Ai(t) ∝ A2
p(t)A

∗
s(t) (4.8)

with Ap the envelope of the pump pulse and As the signal envelope. So it is actually the
temporal overlap of A2

p and A∗s which matters. As the pump pulse should impart its parabolic
phase over the total signal in order to have no aberrations, the pump pulse squared should
be longer than the signal pulse before the nonlinear medium where the FWM takes place.
Also in order to overlap they will have to be sent into their dispersive elements with a relative
delay because both pulses will generally have a different group velocity and thus arrive at
the nonlinear medium at a different point in time. Furthermore, one wants to have a pump
which is flat over the most significant part of the signal as the pump should only impose a
quadratic phase and its amplitude should not influence the idler. In short these are the three
main issues for temporal overlap which we’ll now consequently discuss in more detail:

• τpump2 > τsignal at nonlinear medium

• synchronizing the two pulses at the beginning of nonlinear medium

• flat amplitude pump over τsignal

If we assume a Gaussian pump and a Gaussian signal it is relatively easy to find an opti-
mal initial pump and signal duration independent of the dispersion D. To obey the Fourier
transform condition, the pump experiences twice the amount of dispersion as the signal so if
we take the initial duration of both signals to be the same, the signal fits under the pump.
However, because of the third issue it is advantageous to choose the pump shorter than the
signal pulse, because it will have broadened more and thus the pump is flat over a longer
period of time. In the next figure 4.10 we visually represent the different optimum τpump and
τsignal combinations. The blue region gives all possible combinations that assure temporal
overlap. The green region is a forbidden region where the pump is initially too long compared
with the initial signal length. The intersection line is described as: τsignal = τpump√

2
and is

equivalent with τpump2/τsignal = 1 just before the FWM process. The intersection line equa-
tion strongly reminds of the expression for the resolution of the set-up as given by [1] namely
τresolution = τpump√

2
. Indeed if we are in the green region only an (initial) signal part as large as

τpump√
2

will undergo lens action and thus the smallest resolvable feature has that length τpump√
2

.
Figure 4.10 is independent of the applied dispersions D and 2D and thus in this specific case
of a Gaussian signal and pump, it is possible to choose L via the procedure as described in
the previous section.
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Figure 4.10: Blue region shows the valid choice of initial τpump and τsignal so that the pump and
signal temporally overlap after a dispersion of respectively 2D and D.

If we no longer assume unchirped Gaussian pulses but consider pulses with an initial non-zero
phase, the situation turns much more complicated. Basically we want to know exactly how
much our signal pulse broadens after a dispersion D so that we can determine the width of the
pump so that τpump2 > τsignal at the beginning of the FWM. But this broadening depends
strongly on the initial phase or chirp of the signal which we, in principle, don’t know in
advance. One of the consequences of this incertainty is that the choice of the length can be of
high importance as alluded to in the previous section. We can easily show this by considering
a simple example of a chirped Gaussian signal pulse (with τFWHM = 1.665 t0) described via
its chirp parameter C:

Asignal(t) = e
1+i C

2
( τ
t0

)2
. (4.9)

Depending on the travelled length L and the sign of the chirp parameter the pulse is com-
pressed or broadened faster than an unchirped Gaussian. This different behaviour on L and
C is shown in figure 4.11. If we have an anomalous dispersive fiber (β2 < 0) and a negative
C or vice versa a positive C in a normal dispersive fiber (β2 > 0), a pulse which traveled a
distance smaller than the dispersive length LD = t20

|β2| becomes shorter[9].
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Figure 4.11: Broadening with distance in an anomalous dispersive fiber for different signs of C [9].

On the other hand a Gaussian pump (which should be transform-limited as the pump should
only impart a parabolic phase !) broadens much slowly than the chirped pulse for L > LD.
So to obey the τpump2 > τsignal condition we can no longer choose a pump pulse which has
approximately the initial duration of the signal pulse, because it won’t be broad enough after
2 L to entangle the signal.

We now turn to the second item in the ’issue’ list namely synchronization of the signal and
pump pulse at the FWM process. We can follow a relatively easy guideline by observing
solely the center wavelengths of the signal λsignal and pump pulse λpump. We can calculate
the walk-off caused in the dispersive elements and use this value as the delay we should impose.
Fine-tuning the synchronization can consequently be done by considering the strength of the
idler in function of an incremental delay. The choice of the center wavelengths is important
to avoid spectral overlap, as will be clear later on.

The final item concerns the flatness of the pump relative to the signal envelope. A very
important observation is that the flatness of the pump makes the record length dependent on
the type of signal pulse. An example helps understanding this. Consider a super-Gaussian
signal which has a flat peak and a sech signal which has a sharp peak. The slope of the
super-Gaussian signal in the most important part of the pulse is almost zero while the slope
of the sech signal on both sides of the center is very steep. The amplitude of the product
Ai(t) ∝ A2

p(t)A
∗
s(t) is ideally proportional A∗s as the pump then only imparts a parabolic

phase. So a change in A∗s must dominate over the change in A2
p during the length of the

signal. For the sech signal this is easily accomplished because the pump must vary greatly
over a short time span if it is to dominate the steep slope of the sech pulse. In contrast a
small variation of the pump over the flat top of the super-Gaussian signal makes that the
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pump shape dominates over the signal shape.
A correct definition of the record length should be:‘the maximum duration of the input sig-
nal that is truthfully represented via the spectrum of the idler’. So if the influence of the
(temporal) pump shape compared with the signal is too large, the idler doesn’t reflect the
signal and consequently the record length is limited by this. The standard formula for the
record length τrec = 2β2 L∆ωp doesn’t include this sense of good reproduction, as it doesn’t
take into account the curvature of the pump amplitude. The following figures 4.12 and 4.13
illustrate the influence of the pump curvature for a super-Gaussian signal:

Figure 4.12: a. 1.5 ps super-Gaussian (m=2) signal (blue) and 400 fs Gaussian pump squared (green)
after dispersion of respectively D and 2D in DCF b. Idler shape is affected by the slope
of the (squared) pump pulse.

Figure 4.13: a. 2.2 ps super-Gaussian (m=2) signal (blue) and 600 fs Gaussian pump squared (green)
after dispersion of respectively D and 2D in DCFb. Idler shape is affected by the slope
of the (squared) pump pulse.
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In figure 4.12 the signal (blue) experiences a positive slope of the pump pulse (green) hence
the idler reflects this positive slope. Vice versa as shown in figure 4.13 the idler shows a
negative slope because the signal experiences a negative slope of the pump.
In figure 4.13 the deviation is larger as we chose a relatively shorter signal compared to the
pump hence the pump slope effect is stronger. Small remark: the center wavelength of the
idler shifts according to the relative temporal position of the pump compared to the signal.
This shows how we can ‘scan’ through the record length.

As showed in the above paragraph the required flatness of the pump depends on the signal
one wants to measure. For Gaussian pulses we have an analytical formula for the broadening
therefore we could make the following figure 4.14 which shows how the degree of flatness,
represented by τ2

p

τs
, varies with the initial fraction F defined via τp0 = F τs0. It clearly shows

that the initial pump width τp0 must be at most half of the initial signal width τs0 before the
pump can be considered flat. For this choice the pump2 width before FWM is 3 times larger
than the signal width. This figure is independent of the length L or τs0.

Figure 4.14: Degree of flatness of the pump in function of the fraction F = τp0
τs0

for Gaussian pulses.

4.5.3 Spectral overlap

The time-lens oscilloscope principle can only work if we can extract the spectrum of the idler.
In the case of spectral overlap between the pump and signal, the spectrum of the idler cannot
be separated from the spectrum of the pump. So as we don’t have a complete idler spectrum
we don’t know how the input signal looks like. This shows the critical importance of avoiding
spectral overlap. If we send the input signal to an OSA, we know its center wavelength
and bandwidth. Therefore we can choose the center wavelength of the pump so that the
spectrum of the pump has no overlap with the signal. An extra restriction holds though as
the conversion bandwidth of the FWM process is not infinite. If the pump-signal separation
is too large the idler will end up too far away from the signal and pump, which makes phase
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matching between the three waves harder to satisfy due to group velocity walk-off. As a result
the idler generation dies out. The conversion bandwidth is dependent on the medium where
the FWM takes place and on the pump power2.

Unfortunately this reasoning is not enough because even when the signal and pump are well
separated the idler can still be on top of the pump spectrum. The exact conditions for this to
occur is interesting for further investigation. But instead of deriving complicated (analytical)
expressions we can determine the center wavelength and maximal bandwidth of the pump,
which avoids spectral overlap, via a simple procedure. Our starting point is the following
figure 4.15:

Figure 4.15: Spectral separation signal, pump and idler.

from which we derive:

∆λconversion = (λi +
∆λi

2
)− (λs − ∆λs

2
). (4.10)

This equation 4.10 determines λi because λs,∆λs,∆λi,∆λconversion are in principle known.
The next step is to calculate λp via:

λp =
2λs λi
λs + λi

. (4.11)

Now we can invoke two conditions for the maximal possible ∆λp so that the pump spectrum
doesn’t overlap with the signal and idler spectrum respectively:

(λp − ∆λp
2

) > (λs +
∆λs

2
+ ∆λm1) (4.12)

(λi − ∆λi
2

) > (λp +
∆λp

2
+ ∆λm2) (4.13)

2phase matching condition: ∆k = ks + ki − 2 kp + 2 γ Pp with Pp the pump power [38]
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The terms ∆λm1 and ∆λm2 are two spectral margins and can be chosen according to own
preferences. The most strict of conditions 4.12 & 4.13 applies. The following figure 4.16 shows
the most stringent condition for each combination of (∆λs,∆λi) when ∆λconversion = 150nm,
λs = 1530nm and ∆λm1 = ∆λm1 = 5nm. The forbidden region (yellow) results in a negative
∆λp.

Figure 4.16: Most stringent no-spectral-overlap condition for each combination of (∆λs,∆λi) when
∆λconversion = 150nm, λs = 1530nm and ∆λm1 = ∆λm1 = 5nm.

Every point in the blue and green regions of figure 4.16 is associated with a maximum ∆λp
so that no spectral overlap is present. If we assume transform limited Gaussian pulses we can
also derive a minimum ∆λp from the needed temporal overlap condition:

∆τp0 6
√

2 ∆τs0 =>
λ2
s

∆λs
6

λ2
p

∆λp
. (4.14)

Hence we know the minimum and maximum ∆λp for the time-lens oscilloscope to perform
acceptable.

The nonlinear effect of self-phase-modulation (SPM) which results in spectral broadening can
cause spectral overlap of the signal and pump during the FWM process, which is unwanted.
Luckily one can avoid SPM by working with lower peak powers for signal and pump.

Again a small remark: even if there is no spectral overlap between the idler and pump,
considering the 3dB bandwidth of the pump, the idler spectrum can still be on top of the
low power parts of the pump spectrum. Therefore the idler spectrum can still be amplitude
modulated by this effect.
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4.5.4 Walk-off in HNLF

As explained above, temporal overlap of the signal and pump pulse in the four-wave-mixing
process is required otherwise no lens action takes place. Because the signal and pump are at
different wavelengths in order not to spectrally overlap, we know that dispersion will cause
them to walk-off from each other. The result is smaller temporal overlap and hence inefficient
idler generation. In other words the FWM conversion bandwidth is limited in HNLF. We can
use the following equation to calculate the walk-off [39]:

∆t =
∆λ (2D − S∆λ)L

2
(4.15)

In which D (=2π c
λ2
p
β2) is the dispersion at λp and S is the dispersion slope in the HNLF. The

length of the fiber is L. The separation between the center wavelength of the pump and signal
is ∆λ = λp − λs. The left-hand side ∆t gives the delay between the center wavelengths after
travelling a distance L. The dispersion at λs is related to S via D = S (λp−ZDW ) with ZDW
the zero dispersion wavelength of the HNLF. A symmetrical position of λs and λp around
ZDW makes that the group velocities of the signal and pulse are matched so that there is no
walk-off: ∆t = 0. For a 30 m long HNLF with a ZDW = 1550 nm the following figure 4.17
shows the walk-off in function of ∆λ, for different positions of λp towards the ZDW.

Figure 4.17: Walkoff as a function of the center wavelength separation ∆λ of the pump and signal
for 30 m of HNLF.

The sign of the delay is not important that is why we plot |∆t|. Except from generating
walk-off between the signal and the pump, the nonlinear medium can also distort the signal
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and pump individually because of the long fiber distance. This is obviously unwanted.
Walk-off is no issue in the short dispersion engineered chips, like the chalcogenide chip
[[38],[40]]. These are designed specifically to combine maximal temporal overlap with a max-
imal conversion bandwidth. The choice between the use of a dispersion engineered chip over
HNLF as the nonlinear medium in which the time-lens action takes place, is generally based
on the following:

• Advantages of dispersion engineered chip over HNLF

– Signals do not distort during propagation

– Very large conversion bandwidth (up to 500 nm [38])

– High conversion efficiency

– Compact

• Disadvantages of dispersion engineered chip

– Large insertion losses

– Fragile component

– High cost

Essentially the dispersion engineered chip is far superior when it comes down to the mea-
surement of ultrashort complicated signals. In this case both the signal and pump have a
broad spectral bandwidth, hence the no-spectral overlap condition dictates a large difference
λs − λp. Only a very large conversion bandwidth can then provide the required FWM.

4.6 Design strategy for a Gaussian signal

In this section we combine all insights gained thus far to design a FWM time-lens set-up,
using dispersive fiber, for the measurement of Gaussian signals. It can serve as a guideline for
any type of input pulse. We follow an iterative procedure so to optimize all parameters. The
order of magnitude of the duration of the input signal τs must be known in advance. The
structure of the design approach is shown in figure 4.18. In general the key figures of merit
are the record length τrec and the resolution τres. From the resolution requirement we can
immediately derive the minimum spectral bandwidth of the (Gaussian) pump ∆ωp:

τres =
τp0√

2
=

0.44× 2π√
2 ∆ωp

. (4.16)

The resolution also shows the shortest signal with width τs0, which can be accurately repro-
duced:

τs0 6 τres. (4.17)
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Figure 4.18: Design strategy for Gaussian signal and pump.
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Given the minimum ∆ωp we can calculate the needed length for the required record length:

L =
τrec

β2 ∆ωp
(4.18)

The β2 in the record length expression holds for the signal wavelength. The easy design rule
Lp = 2Ls which is advantageous from a practical point of view, can be used if the difference
λp − λs is smaller than 40 nm, assuming a constant dispersion parameter D = −2π c

λ2 β2(λ).
This is the solution of the equation β2(λs) = 0.95β2(λp), so if the difference λp−λs = 40 nm
there is a deviation of 5% from the Dp = 2Ds condition.

At this point we can do a simple simulation to check if our pump is distorted by TOD after
a dispersion of Dp = 2Ds. If this is the case we must lower the length L while increasing
the pump bandwidth in order to still achieve the requested τrec. But sometimes it will be
impossible to avoid the TOD aberrations and so the requested combination of τrec and τres

can simply not be achieved. If no TOD aberrations are present proceed to considering the
spectral overlap.

If the FWM happens in HNLF we have to consider walk-off effects when determining λp. The
use of the chalcogenide chip avoids this extra complication as long as its conversion bandwidth
is sufficiently broad (order of 100 nm). For the most general design strategy we will assume
FWM in HNLF. The starting point is the choice of the signal wavelength λs. Preferably
the difference ZDWHNLF − λs is not too large so that a quasi-symmetrical position of λp
and λs towards the ZDWHNLF can be chosen. This gives us the possibility an opportunity
to decrease walk-off. With the chosen value of λs we determine the minimum dispersion
Ds,min = ( τs

1.665)2 2π c
λs

. If the product β2 L < Ds,min, the signal is not affected by dispersion
and the set-up will not work properly. If variation of λs doesn’t allow to satisfy β2 L > Ds,min

the given combination of τrec and τres cannot be achieved.

After choosing the signal wavelength, the center wavelength of the pump can be determined
via the walk-off constraints as shown in figure 4.17 in combination with the no-spectral over-
lap condition for the calculated ∆ωp as shown in figure 4.16. Of course these figures depend
on the parameters of the used HNLF, so taking these into account, similar plots should be
made while designing the time-lens oscilloscope.

As a design rule we state that if the signal under test has a FWHM width τs then the walk-off
should be less than a fraction f of τs: |τwalkoff | < f τs. The value of this fraction depends on
the temporal overlap between the pump and signal. If the signal shifts through the pump and
part of the signal falls outside the pump, then this part is not Fourier transformed. Secondly
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if the signal shifts to a region where the pump is not flat then, as previously described, the
amplitude modulation of the pump distorts the signal. This effect depends on the type of
signal. As we work with Gaussian signals a good, but relatively strict starting value for the
fraction f is 1

2 . This value allows the top of the signal pulse to overlap with the half maximum
point of the pump2 pulse, hence giving a reasonably strong idler signal. If we fail to avoid
spectral overlap between the pump and the signal and/or idler, the system will have minor
performance.

The next step is to consider the flatness of the pump as shown in figure 4.14. If we are
not satisfied we stay in the design loop. We run through this loop several times to find the
optimal combination of ∆ωp and L. If we cannot increase ∆ωp any more and still remain with
a non-flat pump, we will have to settle with this non-ideal pump shape. This again limits
the performance of the time-lens oscilloscope. For each loop the above mentioned fraction f
changes. It becomes less strict as the width of the pump2 increases and thus the signal can
walk-through the pump2 over a longer distance without loosing temporal overlap. It now
comes down to choosing a fraction f which allows the signal to stay under the flat part of the
pump2.

After going through the final design loop, the following design parameters are known: L, λp,∆λp.
With this information we can calculate the delay between the signal and pump after their re-
spective dispersive elements. Then this delay is added to the pump or signal so to synchronise
them at the begin of the FWM process. We now have finished designing the set-up.

4.7 Implementation for bit patterns

For telecommunication networks with increasing bit-rates and shorter bit-lengths it is impor-
tant to monitor the data channels for quality control. We show that the FWM time-lens
oscilloscope can be used for this purpose. The time-lens oscilloscope may be implemented in
two different configurations. In the first one, a signal train with multiple bits is covered by
one large pump pulse. We call this the ‘multiple-bit shot’ configuration, see figure 4.19[a].
The second configuration which is shown in figure 4.19[b] is called ‘single-bit shot’ meaning
that every bit has its own pump pulse. As an illustration, we explore how to design the
multiple-bit shot configuration assuming a Gaussian (m=1,C=0) signal and pump shape.
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Figure 4.19: a. Multiple-bit shot configurationb. Single-bit shot configuration.

4.7.1 Multiple-bit shot

We do a numerical design for the monitoring of a 80 Gb/s data rate channel at 1550 nm. The
time slot dt for each bit is 12.5 ps. The data pulses themselves are shorter and with a duty
cycle of 33% we get that the initial FWHM pulse width τ0 equals 4.2 ps. There are two main
design conditions. The first one demands that the dispersed pump pulse should be broader
than the dispersed pulse train. The second condition concerns the minimum resolution. The
time oscilloscope should have a resolution which is much smaller than τ0 which puts an upper
limit on the initial pump width τp0:

τres =
τp0√

2
� τ0. (4.19)

We choose the resolution to be 420 fs which is a tenth of the initial bit width τ0. This leads to
a initial pump width τp0 of 420×√2 = 593.96 fs. The pump is a transform-limited Gaussian
pulse so its spectral bandwidth ∆ωp equals: 0.44/τp0×2π. Once the pump is known we must
determine how broad it becomes after a certain distance Lp before TOD aberrations come
into play. Once this distance L is determined, we calculate how many bits we can actually
measure with this pump. For the 594 fs pump, the first heavily distorting TOD effects (e.g.
oscillations) come into play after about 1600 m. Therefore we can choose L=Lp/2=800 m.
For Gaussian pulses the broadening after a distance L due to group velocity dispersion (GVD)
and TOD can be determined via [9]:

τbroadened
τ0

=

[
1 + (

1.6652 β2 L

τ2
0

)2 +
1
2

(
1.6653

√
2β3 L

2 τ3
0

)2

]1/2

. (4.20)

The pump is broadened to a FWHM of 828 ps after 1600 m of DCF. An individual signal
pulse broadens up to 59 ps after 800 m. Therefore in principle we can measure 15 bits.
The flatness of the pump plays an important role, as it modulates the amplitude of the idler
spectrum. This reduces the number of bits which will be accurately reproduced. As a proof-
of-concept, we did a simulation of a pump which covers 8 bits in one shot of 472 ps. The
result is shown in figure 4.20 the idler reflects the 8 Gaussian bits clearly, but the width of the
generated idler is 4 ps too small. Further investigation is needed to increase this value. For
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this simulation we didn’t have to take into walk-off effects as we were using the chalcogenide
chip. The pump was clearly flat enough as amplitude modulation of the idler is negligible.

Figure 4.20: Frequency-to-time converted idler spectrum reflecting the 8-bit pulse train of a 80 Gb/s
channel.

To show the advantage of the time-lens oscilloscope over the alternatives like FROG and
optical sampling 3.3, we implement a variation in the amplitude of the 8-bit pulse train and
leave all other simulation parameters unchanged. The result is shown in figure 4.21. Except
from the unwanted difference in width, the idler spectrum resembles the input pulse perfectly.

Figure 4.21: Frequency-to-time converted idler spectrum reflecting the amplitude modulated 8-bit
pulse train of a 80 Gb/s channel.
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4.8 Optimization of the FWM set-up with use Waveshaper®
equipment

In this section we make clear why and how we can optimize the previous discussed FWM
time-lens set-up. The main problem with the proposed FWM time-lens implementation is
the use of dispersive fiber as the dispersive element. Optical fiber inherently exhibits third
order dispersion which causes aberrations. Furthermore, we have seen in section 4.3.2 how
important the Fourier transform condition is in terms of aberrations. We again repeat the
Fourier transform condition:

Dp = 2Ds or β2(λp)Lp = 2β2(λs)Ls

It means that for every different combination of λp and λs one should change Lp and Ls if
one wants to exactly obey the Fourier transform condition, which is obviously unpractical.
When the pump and signal pulses become shorter there broad spectrum necessitates a broad
spreading of λp and λs. Therefore β2(λp) will considerably differ of β2(λs) even for DCF.
Using dispersive fiber thus makes it difficult to obey the Fourier transform condition, hence
new aberrations on top of the TOD aberrations are generated.
As a solution to these two issues we propose a new dispersive element, namely the Wave-
shaper® . The Waveshaper® is a reconfigurable pulse shaper that can shape a pulse in
amplitude and phase. It is especially the phase shaping ability which we will exploit in the
rest of this thesis work. The proposed set-up is shown in figure 4.22. The silicon chip is
replaced by a chalcogenide chip which has the same functionalities but better overall perfor-
mance.

Figure 4.22: Waveshaper® set-up for optimal performance of the time-lens oscilloscope.

Second order dispersion manifests itself as a linear frequency chirp or in other words in gen-
erating a parabolic phase. So if the Waveshaper® imposes a parabolic phase onto the signal
we get the equivalent of purely second order dispersion. The Waveshaper® is programmable
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hence we can choose the slope of the imposed parabolic phase which is a measure for the total
amount of dispersion DT [ps/nm] which is added to the signal. So this solution completely
removes the source TOD aberrations!
Moreover if we use the Waveshaper® to add Ds to the signal and 2Ds to the pump pulse, we
can exactly obey the Fourier transform condition, removing the second source of aberrations.
It is clear that it is a convenient and practical way to satisfy the Fourier transform condition.

The Waveshaper® equipment is limited though in the amount of dispersion DT it can impose.
As a result, we can still use the above described design strategy, but instead of having TOD
constraints, we are restricted in DT . This limitation in DT leads to a fixed record length. In
the next chapter we expand on this issue and give a complete description of the limitations
of the device and how the optimal performance compares to the set-up which uses dispersive
fiber as the dispersive element.

4.9 Conclusion

This chapter revealed the underlying complexity of the FWM time-lens set-up. We discussed
all influencing parameters and developed a design strategy for the general case of Gaussian
signal and pump pulses. The importance of a TOD-free dispersive element leads to our
proposed set-up replacing the dispersive fiber with a reconfigurable pulse shaper. Furthermore
the pulse shaper allows us to obey easily the Fourier transform condition, hence avoiding
both TOD and ’non-ideal Fourier transform’ aberrations. In the next chapter we design and
simulate experiments for this new set-up.
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Chapter 5

Design and simulation experiments

with Waveshaper® set-up

5.1 Introduction

This chapter starts off with a review on the three basic components of the ideal time-lens
set-up: the laser source, the Waveshaper® (or DWP) and the chalcogenide waveguide. In
the experiments the time-lens is not implemented via FWM in the chalcogenide waveguide
because for proof-of-principle experiments it is better to avoid the large insertion loss and
polarization requirements of the chalcogenide waveguide. Therefore HNLF is the medium
in which the time-lens action occurs in these experiments. Moreover we will show that the
combination of the laser source and the Waveshaper® in the lab limits the available spectral
bandwidth we can use for the signal and pump spectrum. In this case the pump & signal
spectrum and the difference λs − λp are small, and the results in HNLF or chalcogenide chip
turn out to be comparable. This is because the chip’s main advantage, the large conversion
bandwidth, is not exploited in this case. Hence this bandwidth limitation is a second reason
to use HNLF for the experiments. This chapter shows the different steps in the design of the
experiments. Moreover simulations of the different experimental set-ups are done so that we
can compare with the experimental results in the following chapter. The final section of this
chapter contains a discussion about the fundamental limitations of our time-lens set-up using
the Waveshaper® .

5.2 Specific Equipment

For the experiments we use three quite specific components and therefore we give their main
performance specifications and characteristics in this section before heading on to the exper-
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imental set-up.

5.2.1 Erbium doped fiber laser

The laser which is used in the experiment was characterised by other researchers via FROG
and OSA measurements. The spectrum of the laser covers a broad range from 1542 - 1583 nm
as is shown in figure 5.1. The generated pulses are as short as 219 fs. The figure 5.1 also shows
how the spectrum is affected by the Waveshapers® when no phase or amplitude shaping is
applied. The change in spectrum shape is due to the nonlinear effects in the fiber in the
Waveshapers® . Furthermore the Waveshapers® in the lab have an operation wavelength
region from 1525 to 1572 nm. For the experiments we can thus only use the bandwidth region
between 1542 and 1572 nm to shape the signals, which comes down to a total of 30 nm. The
average power from the laser source is 11 dBm. After the first Waveshaper® the average
power drops to 4.4 dBm and the second Waveshaper® reduces the average power to -4.6
dBm.

Figure 5.1: OSA Spectrum of the source Laser (Magi) directly following 1 m of SMF (dotted), then
following the Waveshaper® used for pulse Shaping (black) and then following the Wave-
shaper® used for introducing dispersion (grey).

The information which is used to program the Waveshaper® is shown in figure 5.2. The
initial phase and amplitude of the laser source must be known to do a correct shaping.
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Figure 5.2: a. FROG measured temporal profiles of laser source directly, following the DWP without
any phase or attenuation settings, following the DWP with phase compensation, and via
a WDM filter b. FROG measured spectral profiles as outlined in (a).

5.2.2 Waveshaper®

The Waveshaper® is designed to function as a reconfigurable optical add/drop multiplexer
(ROADM) but with extra features such as dispersion compensation or optical delay. It
was developed in a cooperation between the company Finisar and the photonics department
CUDOS at the university of Sydney. In figure 5.3 the interior of the device is shown.

Figure 5.3: Waveshaper® set-up.

The most important component is the 2D liquid crystal on silicon (LCOS) array in which
each pixel can change the phase of the incident light. By changing the phase pattern on
the LCOS a pulse can be delayed, phase modulated, and amplitude modulated. The delay
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is generated by sending the pulse to a different part of the grating so that in total its path
length is increased before it leaves through one of the output ports. In more exact words as
stated in [41]: “By sloping the phase front along the vertical axis, the signal is deflected to a
desired output port, after the optical path is retraced upon reflection from the LCOS”. The
grating sends the different frequencies to a different horizontal position and phase modulation
is provided by varying the phase of the LCOS along this horizontal dimension. Pure second
order dispersion is generated when a parabolic varying spectral phase is applied. It is this
feature which makes the Waveshaper® ideal for the time-lens set-up. It is clear that the
LCOS array is a phase-only modulator so amplitude modulation is obtained by “steering part
of the light to dump locations within the device through advanced phase modulation of the
phase front” [42].

Every pixel of the LCOS must be programmed in such a way that the pulse exhibits the
correct phase and amplitude. This programming is based on the principle of fourier-domain
pulse shaping which is schematically represented in figure 5.4:

Figure 5.4: Schematic representation of fourier-domain pulse shaping [42].

The implementation has the following sequence:
First the fourier transform A’(f) of the desired temporal waveform is calculated. Secondly
the fourier transform E(f) of the available input pulse is measured. A complex function F(f)
can relate the two via: A′(f) = F (f)E(f). This filter function is determined in phase and
amplitude via F(f)=A’(f)/E(f). In the final step the filter phase and amplitude get mapped
into the corresponding voltage of the pixels on the LCOS.

The Waveshaper® in the lab holds the very important bandwidth-dispersion product: ∆λ3dB×
D = 40 ps. It means that for a pulse with a spectral bandwidth of 1 nm a total dispersion D
of ± 40 ps

nm can be applied. A custom designed Waveshaper® can increase this bandwidth-
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dispersion product up to 100 ps. A Waveshaper® has a limited range of wavelengths it can
work with. The two Waveshapers® in the lab have an operation bandwidth in the C-band,
going from 1525 to 1570 nm. Waveshapers® working in the L-band (1565 - 1625 nm) also
exist.

5.2.3 Chalcogenide chip

The chalcogenide chip is a compact planar rib waveguide based on As2S3 glass [40]. Figure
5.5 shows an example of a design:

Figure 5.5: Structure of an As2S3 ridge waveguide[38]

It is designed for optical signal processing making use of the ultrafast nonlinear phenomena
originating from the third order susceptibility χ3. The chip provides a very high nonlinear-
ity over a short length in the order of a few centimeters, which enhances SPM, XPM and
FWM. The dispersion in the chip can be varied via a change in the waveguide dimensions,
thereby changing the waveguide dispersion[38]. The applications of this chip are ubiqui-
tous [[43],[44],[45]]. The characteristics of the chip are comparable to the silicon waveguide
chips[46] like the one used in the third key experiment from chapter 3. But whereas the
silicon chip suffers from free carrier effects and two-photon absorption (TPA) which reduces
e.g. the FWM conversion bandwidth, As2S3 is not as severely limited by these effects. Also
TOD is larger in the silicon chip [38]. Some of the consequences are a higher amplification of
the signal in FWM processes (important for e.g. signal regeneration) and a larger conversion
bandwidth which allows for colourless operation in the chalcogenide chip. For the time-lens
oscilloscope implementation the large conversion bandwidth is a great advantage because it
means that we can use shorter signal and pump pulses, which increases the resolution and
overall performance as we can measure shorter pulses.
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5.3 Experiment with FWM in HNLF

5.3.1 Design experiment 1

The first experiment is a proof-of-principle to show that the signal pulse is indeed reflected in
the idler spectrum. Therefore we choose a simple signal shape, namely a 1 ps Sech pulse. Its
spectral bandwidth is about 2.5 nm. Furthermore we are not interested in maximalizing the
record length as we will not scan through the pump pulse. Hence the choice D= 16 ps/(nm
km) and L = 50 m doesn’t fully exploit the possibilities of the Waveshaper® . As said before
the combination of the laser source and the Waveshaper® limits the total spectral bandwidth
that we can use to 30 nm. Both the signal and pump spectrum have to be shaped from of
this amount. The first experiment uses 30 m of HNLF as the nonlinear medium for FWM
and its zero dispersion wavelength (ZDW) is 1551 nm. To minimize walk-off effects we put
the pump and signal on different sides of the ZDW.
The pump is a 1 ps Gaussian with a spectral width of about 3.5 nm. As the pump is initially
equally broad as the signal we are guaranteed that the pump2 will cover the total signal before
the four-wave-mixing process starts. We have basically two major conditions: firstly we want
to avoid spectral overlap between the signal and pump and secondly we want to keep the
walk-off to an acceptable level. The following figures 5.6 are a detailed guideline for walk-
off effects in the used HNLF of 30 m. The horizontal axis shows the different signal-pump
spacings ∆λ = λs − λp. The signal wavelength can vary between the ZDW (1551 nm) and
1570 nm. For all these possible positions of λs towards the ZDW we generated a curve to
show the corresponding walk-off.
We first choose the center wavelength λp such that it is to the left of the ZDW but close to it,

as the spectrum of the laser source doesn’t allow us to fit a lot more than the 3dB bandwidth
of the pump between 1545 nm and 1551 nm. Secondly we choose the center wavelength λs at
a position such that the pulses only start to spectrally overlap at the -30dB intensity point.
This gives the following choice of center wavelengths: λp = 1549 nm and λs = 1562 nm. We
now check if the walk-off is acceptable for this choice. In the left bottom figure in figure 5.6
is indicated that our choice gives a walk-off of 50 fs. The signal pulse broadens after 50 m to
3.4 ps and the pump pulse stretches to about 5.7 ps after 100 m. Hence this value of 50 fs is
negligible and walk-off will not impose any problems in the experiment.

5.3.2 Simulation experiment 1

We simulated the experiment with the above stated design. The idler wavelength is

λi =
λs λp

2λs − λp =
1562× 1549

2× 1562− 1549
= 1536nm (5.1)

The simulations shows accordingly a sech-shaped pulse at this wavelength 5.7:
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Figure 5.6: Walk-off for different ∆λ = λs − λp and for different spacing of λs towards the zero
dispersion wavelength at 1551 nm for 30 m of HNLF.
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Figure 5.7: Spectrum after four-wave-mixing with signal at 1562 nm, pump pulse at 1549 nm and
idler at 1536 nm.

The pump and signal spectrum start to interfere around -30dB which is in accordance with
the proposed design. The resulting idler shape in linear scale is shown in figure 5.8

Figure 5.8: Simulated spectrum of the generated idler in the first experiment.

The FWHM spectral bandwidth of the idler is 1537.057nm − 1535.505nm = 1.546 nm and
with the time-to-frequency conversion factor formula in terms of ∆λ and the dispersion D of
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the DCF fiber we get:

∆tmeas = (λsλi )
2DL∆λ = 1.03× 16 ps

nmkm × 0.050km× 1.55nm = 1.27 ps

The resolution is τpump/
√

2 = 1000 fs/
√

2 = 707.1fs, hence τact =
√
τ2
meas − τ2

res=1.07 ps,
which is close to the simulated signal length of 1 ps. If we repeat the simulation with a shorter
pump of 870 fs, which enhances the resolution. We place the pump and signal a bit further
apart. We choose in this case: λs = 1564.5 nm and λp = 1548 nm so that λi = 1531.8 nm.
The simulations give the following results:
The FWHM spectral bandwidth of the idler is 1532.87nm− 1531.39nm = 1.48 nm and with
the time-to-frequency conversion factor formula in terms of ∆λ and the dispersion D of the
DCF fiber we get:

∆tmeas = (λsλi )
2DL∆λ = 1.04× 16 ps

nmkm × 0.050km× 1.48nm = 1.23 ps

So indeed the measured pulse width is closer to the simulated width of 1 ps. The resolution
is τpump/

√
2 = 870 fs/

√
2 = 615.18fs, hence τact =

√
τ2
meas − τ2

res=1.065 ps, which is again
close to the simulated signal length of 1 ps and slightly better than for previous parameters.

5.3.3 Design experiment 2

In the second experiment we want to transform a more complex signal. We choose an asym-
metric shape described by:

Ain =
√
P0

[
e−(0.6 t)2 − 0.5 e−5 (0.6 t−0.06)2)

]
. (5.2)

Figure 5.9 shows the input signal and its associated spectrum.

Figure 5.9: Input signal and spectrum for the second experiment.
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Although the signal is relatively long, namely 4 ps, the spectrum is a wide 8 nm. Making
the signal much shorter would cause us a shortage of bandwidth due to the afore-mentioned
bandwidth constraints. As the signal needs a higher accuracy to be well represented by the
idler, the pump pulse is a short 700 fs Gaussian pulse. The design strategy for the second
experiment is closely related to the one of the previous experiment. We choose the pump
wavelength λp to be 1548 nm. Because the pump is shorter its spectrum is broader (5 nm)
and hence we should place λp a bit further to the left of ZDW compared to the previous
experiment. The signal wavelength λs is determined via the same -30dB spectral intersection
criterion. It results in λs = 1563 nm. The walk-off for 30 m of HNLF is in this case 55 fs,
which is negligible considering that the pump and signal are broadened to about 8 ps after
their dispersive elements.

5.3.4 Simulation experiment 2

The idler wavelength is

λi =
λs λp

2λs − λp =
1563× 1548

2× 1563− 1548
= 1533nm (5.3)

The spectrum of the total field (pump + signal + idler ) after the four-wave-mixing looks like
figure 5.10

Figure 5.10: Spectrum after four-wave-mixing with signal at 1563 nm, pump pulse at 1548 nm and
idler at 1533 nm.

The idler spectrum 5.11 doesn’t reflect the incoming signal as well as in the previous ex-
periment. The reason for this is the limited resolution. The resolution in this set-up is
τpump/

√
2 = 700 fs/

√
2 = 495 fs, while the dip in the signal shape is sharper than 500 fs.

Therefore is the dip in the idler spectrum not as deep as in the initial signal shape.
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Figure 5.11: Simulated spectrum of the generated idler in the second experiment.

The relative height of the two peaks (=0.75) is conserved during the transformation, which
shows the success of the design and simulation.

5.4 Fundamental limitations of the Waveshaper® set-up

In this section we discuss the limitations to the performance of the Waveshaper® set-up.
The first limitation comes from the fixed bandwidth-dispersion product ∆λ3dB ×DT = 40ps.
The pulse with the broadest spectral bandwidth (pump or signal) determines the maximum
DT for the given bandwidth-dispersion product. If we rewrite the expression for τrec (which
holds for ∆λp > ∆λs) we can easily see that the bandwidth-dispersion product is equivalent
to the record length:

τrec = 2DL∆λp = DT ∆λp = 40ps (5.4)

As said before, a custom made Waveshaper® can increase the bandwidth-dispersion product
up to maximally 100 ps, which gives τrec = 100ps. The second limitation is the compactness
of the set-up. The Waveshaper® devices are a lot bigger than two spools of optical fiber and
definitely not integratable.

We now investigate what the highest possible resolution is for this set-up. Essentially it is
the bandwidth of the Waveshaper® that determines the maximum resolution. Assume a
transform-limited Gaussian signal at λs = 1550 nm, shaped by a Waveshaper® with an
operation region from 1525 nm to 1570 nm. A transform-limited Gaussian pump pulse is at
λp = 1592.5 nm and is shaped by a Waveshaper® with an operation region from 1570 nm to
1615 nm. The pump has a maximal bandwidth of ∆λp = 45 nm, which equals the operation

region of the Waveshaper® . Hence its duration τp is 0.44λ2
p

c∆λp
= 83 fs. The shortest signal
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possible has a duration equal to the highest resolution τs = τres = τp√
2

= 58.45fs, which leads
to ∆λs = 60.3 nm. This is too broad for a Waveshaper® to work with so we have to limit
the signal to ∆λs = 45 nm, ending up with a shortest signal of 0.44λ2

s
c∆λs

= 78 fs. The associated
minimum dispersion to make the set-up work is Ds,min = (ts/1.665)2 2π c

λ2
s

= 0.0017[ps/nm].
The bandwidth-dispersion product equals Ds,min ∆λs = 0.329 ps, which is well below the
limit of 100 ps. Increasing the dispersion Ds the signal sees, decreases the generated idler
bandwidth.

The longest signal that can be measured with the highest resolution of 78 fs is different from
the record length, as the record length doesn’t take into account that the input signal must
see a minimum dispersion Dmin = ( τs

1.665)2 2π c
λ2
s

before the set-up works 4.3.1. We can easily
calculate the longest signal duration. The maximum dispersion that can be imposed on the
pump is Dp,max = 100ps

45nm=2.2 [ps/nm]. The signal sees half of this dispersion, hence Ds = 1.11
[ps/nm]. The signal dispersion must obey Ds > Dmin = ( τs

1.665)2 2π c
λ2
s

from which we determine
that τs = 62.6 ps for a signal at 1550 nm.

5.5 Conclusion

In this chapter we discussed the key components in the experimental set-up. The available
spectral bandwidth of the laser cannot be fully used as the wave-shaper has a limited operation
region. Keeping this constraint in mind, we designed and simulated simulated two different
set-ups in which the time-lens was implemented via FWM in HNLF. The pump and signal
are shaped in amplitude and phase via the Waveshaper® equipment which constitutes a
reconfigurable temporal imaging system with a very low amount of aberration compared
to the FWM time-lens set-up from reference [1]. The positive simulation results indicate
that the experiments will be successful. To end this chapter, we explored the fundamental
limitations of our proposed set-up. The record length is limited to 100 ps when using a custom
made Waveshaper® and the best achievable resolution is 78 fs. The longest signal, at the
telecom wavelength of 1550 nm, that can be measured with this accuracy is 62.6 ps long.
In the following chapter we present the results obtained from our designed experiments and
compare them with the simulations from this chapter.
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Chapter 6

Experimental results

6.1 Introduction

6.2 Experiment in HNLF

6.2.1 Experiment I: 1ps Sech input pulse

The first experimental set-up is very simple and requires no optimization components such as
polarizers or optical delay lines. The laser source is connected with a Waveshaper® which
shapes the signal and pump pulse in amplitude and applies the correct phase (equivalent to
purely second order dispersive element) after which the generated pump and signal pulse are
coupled into 30 m of HNLF. The output of the HNLF is connected to an OSA. So the set-up
looks as follows:

Laser - Waveshaper - HNLF - OSA

The signal and pump have a center wavelength of 1562 nm and 1549 nm respectively. During
the experiment no amplifiers are used, instead both pulses are attenuated in the Waveshaper®
before they are sent into the HNLF. The average power before they pulses are sent into the
HNLF is -17.67 dB for the signal and -11.72 dB for the pump so to avoid other nonlinear
effects like SPM which distort the idler signal. The Waveshaper® creates two 1 ps pulses,
the signal has a Sech shape and the pump is a Gaussian. A FROG measurement shows the
profiles of the signal and pump pulse before they are sent into the HNLF.
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Figure 6.1: Pump and signal temporal and spectral profiles with a dispersion D of 16 ps/nm/km for
L=50 m (signal) and L=100 m (pump).

The pump pulse is slightly distorted in the time domain around t=0 ps, but has a quasi-
perfect quadratic phase. The distortion is because an erbium doped fiber amplifier (EDFA)
was used to measure the pump pulse as a FROG measurement requires high peak power.
The EDFA doesn’t work optimal for low repetition rate signals. The signal pulse has a good
temporal shape but its phase deviates from a perfect parabola around t=7 ps. This deviation
is not important for us because the pulse amplitude is zero at this point. This being zero of
the pulse is a source of numerical inaccuracies leading to the deviation in phase.
The figure 6.1 is used to calculate the slope of the phase curve around the center of the pulses,
from which we retrieve that for the signal:

dφ
dτ = −4.6733 τ − 1.2042 => Ss = −4.6733,

and for the pump:

dφ
dτ = −2.2143 τ + 0.2294 => Sp = −2.2143.

Theoretically the slopes Ss and Sp are the following: Ss = 1
Ds

and Sp = 1
Dp

in which Ds and
Dp is the total dispersion on the signal and pump respectively. The ratio of the slopes is thus

Sp
Ss

=
1
Dp
1
Ds

=
Ds

2Ds
=

1
2
. (6.1)

For the created pulse and signal we get a ratio of

Sp
Ss

= −2.2143
−4.6733 = 0.4738 ≈ 0.5.
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Figure 6.2: a. First derivative of the phase of the signal b. First derivative of the phase of the pump.

This proves that we obey the Fourier transform condition for the most important part of the
pulses.

The experimental result is shown in figure 6.3:

Figure 6.3: Comparison of the FROG and time lens oscilloscope measurement (OSA) of a 1 ps
transform limited Sech pulse (theoretical).

As a first experiment this is very promising as we can clearly see how well the idler profile
matches with the theoretical Sech pulse profile over a range of more than 10 dB and giving
a similar performance as the FROG-measurement (blue curve). The fact that the phase is
close to zero over the whole pulse indicates that the generated initial pump and signal pulses
are transform limited. The experimental result is also in accordance with the simulation 5.3.1.

We perform a similar experiment by using the following set-up:
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Laser - Waveshaper1 - Waveshaper2 - HNLF - OSA

The pump is a 870 fs Gaussian at 1548 nm and the signal is a 1 ps Sech at 1564.5 nm.
We thus shorten the pump to achieve a better resolution τres = 870fs√

2
= 615.2 fs. The

first Waveshaper® shapes the signal and pump in amplitude and the second Waveshaper®
imposes the correct phase. The new set-up allows us to measure the shape of the signal
after the first Waveshaper® via a FROG measurement. This is the signal shape we should
compare our idler spectrum with, as this is the signal which is the real input of our time-lens
set-up. Spreading the shaping of the amplitude and phase over two Waveshapers® yields
good results as shown in figure 6.4:

Figure 6.4: Result of experiment 1 in the new set-up: the idler (blue) is a perfect reproduction of
the input signal which is represented by the FROG trace (black).

The experimental idler has a measured width of τ2
meas=122 fs (measured with FROG), which

is equivalent with an actual width of τact =
√
τ2
meas − τ2

res=1.054 ps. This results shows a
very good correspondence between the simulation (τact = 1.065ps) and experiment.

6.2.2 Experiment II: Asymmetric pulse

The experiment as described in section 5.3.4 was unsuccessful as we didn’t manage to shape
the signal in amplitude as good as we wanted. We must stress though that in the ideal
Waveshaper® set-up, the signal is not shaped in amplitude by a Waveshaper® . So the
failure of this experiment doesn’t mean that the experiment wouldn’t work with this type of
input pulse.
We took another approach to generate a similar signal by simulating the sum of two 0.5 ps
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Gaussian pulses separated by 2 ps. The parameters are the following: λs = 1564.5nm,λp =
1548nm, Dsignal = 0.15[km] × 16[ ps

kmnm ] and Dsignal = 0.3[km] × 16[ ps
kmnm ]. The result is

shown in figure 6.5.

Figure 6.5: Generated input signal by the Waveshaper®(black) and resulting idler signal (light grey)

The simulation predicted the conservation of height and indeed the height information is
conserved, which shows the success of the transformation. But, similar to the simulation of
the 8-bit pulse train 4.7.1, the time-lens trace is shorter than wanted. Further research should
show the (theoretical) reason for this and then we can incorporate a compensation for it.

6.2.3 Expriment III: Pulse burst

This experiment shows the measurement of a pulse burst of four 1 ps Gaussian pulses with
6.25 ps separation, which is generated by spectral filtering the 38 MHz modelocked source
[47]. The signal has a center wavelength of λs = 1564.5 nm and the pump is a 870 fs
Gaussian with center wavelength at λp = 1548 nm. The applied dispersions are the following:
Dsignal = 0.15[km] × 16[ ps

kmnm ] and Dsignal = 0.3[km] × 16[ ps
kmnm ]. The results are shown

in figure 6.6. As can be seen each pulse in the pulse-burst (black) does not have equal
amplitude. We are confident that the amplitudes of the pulses in the pulse burst are varying,
however due to the complex spectral structure of the pulse burst and the limited resolution
of the FROG, the retrieval algorithm finds it difficult to achieve accurate matching between
the measured spectrogram and the retrieved spectrogram, and thus does not give accurate
amplitude information. Therefore a different independent measurement system is required
(required future work) to verify the varying amplitudes of the input pulse burst. However this
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figure gives us an indication that our time lens oscilloscope has the capability to measure a
pulse train accurately and gives amplitude information that can otherwise be lost in sampling
oscilloscope measurement techniques for example. Again the idler width is smaller than
wanted.

Figure 6.6: Input signal as shown by a FROG measurement (black) and the frequency-to-time con-
verted idler spectrum (grey).

6.2.4 Experiment IV: Sensitivity to the Fourier transform condition

As shown in section 4.3.2, aberrations originate when we deviate from the exact Fourier
transform condition 3.8. The experimental results in figure 6.7 show the measurement of a
1 ps Sech signal at 1564.5 nm, using a 870 fs Gaussian pump at 1548 nm, while deviating
from the Fourier transform condition. Again we set Dsignal = 0.15[km] × 16[ ps

kmnm ] and
Dsignal = 0.3[km]× 16[ ps

kmnm ]. When we don’t obey the Fourier transform condition exactly,
the ratio of the (time) phase slope of the pump and signal 6.1, deviates from the ideal value
0.5. As expected the aberrations grow worse with increasing deviation from the ideal slope
ratio of 0.5 .
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Figure 6.7: Aberrations arise for the measurement of the input 1 ps Sech pulse (black) for a variation
in the slope ratio which is ideally 0.5 .
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Chapter 7

Conclusions and future directions

In this thesis work we demonstrated how we can use a temporal imaging set-up, working in
the Fourier transform regime, to measure the waveform of signals with sub-picosecond accu-
racy. We did a detailed investigation of the specific FWM time-lens set-up as reported in
[1] which uses dispersive fiber as the dispersive element and a silicon chip as the nonlinear
medium for FWM. We have discussed all design parameters via simulations in Matlab® and
derived the key steps of the design process of a time-lens oscilloscope. The results of the
investigation show that one needs an alternative to the dispersive fibers to reduce aberrations
caused by third-order dispersion, which is unavoidable in optical fiber. Furthermore, more
flexibility is required to satisfy the Fourier-transform condition more exactly. Deviation from
the Fourier-transform condition is an additional source of unwanted aberrations. Therefore
we proposed a new reconfigurable set-up using a Waveshaper® as the dispersive element.
The Waveshaper® facilitates the imposition of purely second order dispersion and satisfies
the Fourier-transform more flexibly, so that aberrations are drastically reduced.

In the ideal case, the proposed set-up uses two Waveshapers® and a chalcogenide chip for
FWM. The fundamental limits of this set-up were determined and theoretically overall per-
formance can compete the results presented in [1]. The maximum resolution of 78 fs over a
record length of 100 ps offers a much better theoretical record-length-to-resolution ratio of
1280 versus the reported 450. Future implementation of the ideal set-up is needed to verify
its actual performance.

Due to bandwidth constraints, the ideal set-up was not yet implemented during this thesis
project. The combination of the laser source and available Waveshapers® restricted the
bandwidth we could allocate to the signal and pump spectrum. As a result, the signal and
pump spectrum were relatively narrow and positioned close to each other. Therefore we
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couldn’t justify the use of the dispersion-engineered chalcogenide chip, which suffers high in-
sertion losses, over HNLF as the nonlinear medium for FWM. The bandwidth constraint is
alleviated by using a separate signal source and two Waveshapers® working in a separate
wavelength range (L and C band). Using a separate signal and pump source does require an
efficient solution to synchronise the signal and pump pulses just before the nonlinear medium.

Two experiments were designed and simulated using FWM in HNLF, taking into account
the given bandwidth constraint and to serve as a proof-of-concept. We demonstrate that the
Waveshaper® can indeed be used to create a more flexible time-lens architecture with re-
duced aberrations. The experimental results show the successful measurement of a 1 ps Sech
input signal with femtosecond accuracy, in agreement with the simulations. The measure-
ment of more complicated input signals indicated that the time-lens is capable of measuring
amplitude variations with high accuracy.

Although the influence of most of the design parameters have been characterised in this thesis
work, further (theoretical) research is needed. We didn’t look closely into the dynamic range
of the set-up and how the FWM conversion efficiency/bandwidth affects the generated idler
bandwidth. Both would indicate how using the chalcogenide chip influences the performance
of the set-up. More experiments should be designed to put the ideal set-up to the test, espe-
cially to assess its capability in measuring amplitude-varying signal trains. This would clearly
prove the advantage of the time-lens oscilloscope over alternative measurement schemes such
as FROG and optical sampling.
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Appendix A

A.1 Phase function thin lens

A thin lens acts as a phase transformer. Because the lens has a different refractive index n
than the surrounding air (nair = 1), the phase shift the light gets during transit, depends on
the time spent in the lens. We consider a thin lens so that a light ray propagating in the
z-direction which enters the lens at a transverse position (x,y), leaves the lens at the same
transverse position. The resulting phase shift for each transverse position (x,y) is given by:

φ(x, y) = k n4(x, y) + k [40 −4(x, y)] = k40 + k (n− 1)4(x, y) (A.1)

The parameter ∆ is the thickness of the lens measured along the z-axis. In the first equality,
the first term describes the phase shift due to traveling through the lens and the second term
accounts for the phase shift in air.

We use the scalar theory of light so we consider a single component of the electric or magnetic
field vector, which we represent by U(r). We can relate the field Uin(x, y) at the input of the
lens with the output field Uout(x, y) of the lens via the transfer function t(x,y) which expresses
a position-dependent phase shift:

Uout(x, y) = t(x, y)Uin(x, y) = e−iφ(x,y) Uin(x, y) (A.2)

With the use of the paraxial approximation it is possible to find an expression for the thickness
of the lens in function of its shape. We can write [11]:

4(x, y) = 40 − x2+y2

2 ( 1
R1
− 1

R2
)

in which R1 is the radius of curvature of the input surface of the lens and R2 is the radius of
curvature of the output surface of the lens.
After defining the focal distance of a thin lens f as:
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1
f = (n− 1) ( 1

R1
− 1

R2
)

we end up with the final form of the transfer function t(x,y) which describes the thin-lens
action

t (x, y) = e−ikn∆0e
i k
2 f

(x2+y2) (A.3)

A.2 Impulse response temporal imaging system

We consider the imaging system as a linear system and consequently write:

A(z, τ) =
∫ ∞
−∞

h(τ ; τ0)A(0, τ0)dτ0 (A.4)

where h(τ ; τ0) is the response of the system at time τ after insertion of a delta-impulse applied
at τ0. The input waveform A(0, τ) = δ(τ − τ0) serves as a weighting function. The first step
in the imaging setup is the input dispersion and the field after the dispersive element with
length L1 is:

A(L1, τ) = G1(L1, τ) ∗ δ(τ − τ0) = G1(L1, τ − τ0) (A.5)

The lens has a finite aperture time and if we introduce a pupil function P (τ), we can write
its transmittance as P (τ)H(τ). After the lens the field is (in the time domain):

A(L1 + ε, τ) = G1(L1, τ − τ0)P (τ)H(τ) (A.6)

After the output dispersive element with length L2, the impulse response results in:

h(τ ; τ0) = G1(L1, τ − τ0)H(τ)P (τ) ∗G2(L2, τ) (A.7)

We first expand the convolution in this expression:

h(τ ; τ0) =
∫ ∞
−∞

G1(L1, τ
′ − τ0)H(τ ′)P (τ ′)G2(L2, τ − τ ′)dτ ′ (A.8)

Now we insert the transfer functions as found in figure 2.7:

h(τ ; τ0) =
1

4πi
√
a b

∫ ∞
−∞

P (τ ′) ei
(τ ′−τ0)2

4 a · ei (τ−τ
′)2

4 b · ei τ
′2

4 c dτ ′ (A.9)

The terms in τ are now put outside the integral and we combine the exponential terms in τ ′

and τ ′2 which results in:

h(τ ; τ0) =
1

4πi
√
a b

ei
(τ20 /a+τ

2/b)

4

∫ ∞
−∞

P (τ ′) e
iτ ′2
4

(1/a+1/b+1/c)e
−i τ ′

2
(τ0/a−τ/b)dτ ′ (A.10)

This is the final shape of the impulse response and by choosing the right combination of the
parameters a,b,c we end up either in the magnifying regime either the fourier-transfer regime.
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A.3 Magnification regime

We now show how stretching of a pulse can be established if the so-called temporal imaging
condition is obeyed. We start with considering an input pulse with envelope A(z, τ) and
spectrum A(z,Ω) which at the end of the input dispersion looks like:

A(L1, τ) = F−1A(0,Ω)G1(L1,Ω) (A.11)

Sending this pulse through the lens results in:

A(L1 + ε, τ) = F−1A(0,Ω)G1(L1,Ω)H(τ) (A.12)

Finally after the output dispersion the envelope is:

A(L2, τ) =
1

2π
F−1[(A(0,Ω)G1(L1,Ω)) ∗H(Ω)] ·G2(L2,Ω) (A.13)

Inserting the correct expressions for the various transfer functions 2.7 results in:

A(L2, τ) =
√

c

b+ c
e

i τ2

4 (b+c)
1

2π

∫ ∞
−∞

A(0,Ω) · e−i (1/a+1/b+1/c) Ω′2 · ei ( c
b+c

) τΩ′dΩ′ (A.14)

If the sum 1/a+1/b+1/c equals zero the quadratic phase in Ω′ is removed and we end up
with

A(L2, τ) =
√

c

b+ c
e

i τ2

4 (b+c)
1

2π

∫ ∞
−∞

A(0,Ω) · ei ( c
b+c

)τ Ω′dΩ′ (A.15)

which is a Fourier transform with a scaled time τ ′ = τ · c
b+c = τ

M if we define M as follows:

M ≡ b+c
c

The magnifying power of the system is shown by the result of the Fourier transform:

A(L2, τ) =
1

2π
√
M

e
i ω0 τ

2

2M fT A(0, τ/M) (A.16)

The above equation is the principal result of the magnifying regime of a temporal imaging
system.
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Figure A.1: Example of a time-lens implementation working in the magnifying regime [48].

We now focus on the condition which led to this basic result, namely:

1
a

+
1
b

= −1
c

(A.17)

Replacing the parameters a,b,c by their expressions as given by figure 2.7 results in:

1
L1 β21

+
1

L2 β22
= −ω0

fT
(A.18)

which is the temporal imaging condition. This expression is completely similar to the well-
known lens-law (with di the image distance and d0 the object distance):

1
d0

+
1
di

=
1
f

(A.19)

Rewriting M via the imaging condition yields an expression for M in function of the input
and output dispersion parameters:

M =
b+ c

c
= − b

a
= − L2 β22

L1 β21
(A.20)

Again the similarity to the spatial case M = −di/d0 is striking.
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A.4 Waveguide parameters

SMF

Figure A.2: Parameters of the simulated standard single mode fiber.

DCF

Figure A.3: Parameters of the simulated dispersion compensating fiber.

HNLF

Figure A.4: Parameters of the simulated highly nonlinear fiber.
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Chalcogenide chip

Figure A.5: Parameters of the simulated chalcogenide chip.
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